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I. Introduction 
 

We consider a simple random walk in the plane: a sequence of random variables nX  with 

values 1,  probability 1/ 2  in each case. Let 
1

n

n j

j

S X


  be the sum of the first n  variables ; 

the initial value (at time 0n  ) is 0. We are interested in quantitative estimates of the 

behavior of nS  when n  becomes large. 

 

A well-known result is Khintchine's law of the iterated logarith (1924): almost surely, when 

n : 

  
limsup 1

2

nS

nLog Log n
   and 

  
liminf 1

2

nS

nLog Log n
   

 

We make two comments: 

 

1. Such estimates are not quantitative at all 

 

A first attempt to obtain quantitative estimates, using the original probabilistic proof, was 

made by the author in : 

http://www.scmsa.eu/archives/BB_paradoxes_probabilistes_2016_02.pdf 
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2. Their probabilistic appearance is misleading 

 

Looking at such a statement, everyone has the impression that, for a given player, there are 

some unknown forces which will, sooner or later, bring his fortune close to Khintchin's curves 

(a Khintchin curve is of the form   2y x Log Log x  ). This is completely wrong; at any 

time, the game is only governed by the 1  rule, with equal probability.  

 

What Khintchin's laws say, and, more generally, what any result about random walks says, is 

that there are more paths with some properties than paths with other properties. They are not 

individual results about each path; they are results about the number of paths with a given 

characteristic. Such results are in fact of combinatorial nature. For instance, at time n , the 

proportion of paths which never touched the curve y n  tends to 0 when .n   

 

In order to prove such results, we take here a completely different approach, which is not 

probabilistic anymore, but relies upon a concept derived from "energy absorption". Our aim is 

also to obtain quantitative estimates, of the form: 

 

Given a curve  y x , what is the proportion of paths which never touched the curve before 

the instant n  ? 

 

II. Basic settings 
 

We consider that, at time 0, a unit of energy is put at the origin. This unit will then divide 

itself in two halves, at time 1n  , one at the point  1,1  and one at the point  1, 1 . More 

generally, every time a division point is met, the available energy divides equally into the two 

possible paths. So, for instance, at the time 2,n   3 points will receive some energy, namely

 2,2  receives 1/4,  2,0  receives 1/2,  2, 2  receives 1/4. At any step, in this configuration, 

the sum is always 1.  

 

As it is well-known, the values of nS  are even if n  is even, and are odd if n  is odd. We observe 

that, obviously, at any time ,n  we have nS n . The following Lemma is well-known (in what 

follows, for simplicity, we consider only the even values): 

 

Lemma 1. - Let 2 ,2n kA  be the point of coordinates  2 ,2 ,n k  with ,..., .k n n   The number of 

paths from 0 to 2 ,2n kA  is: 

 
2

2 ,2
n

N n k
n k

 
  

 
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Proof of Lemma 1 

 

If we want to reach this point in 2n  steps, we need x  times the value 1 and y  times the value 

-1, with 2x y n   and 2x y k  , which gives ,x n k   y n k  . So there are 
2n

x

 
 
 

 possible 

paths, which proves the result. 

 

We write  N A  for the total number of paths, starting at 0, finishing at .A   

 

Since there is a total of 
22 n

 possible paths at time 2 ,n  each point 2 ,2n kA  receives an amount of 

energy equal to: 

 

 2 ,2 2

21

2
n k n

n
e A

n k

 
  

 
 

 

The repartition of energy is given by a binomial law: there is more energy at the central points 

and very little energy at the extreme points ( 2 ,2n nA  and 2 , 2n nA  ). 

 

In this preliminary approach, the total amount of energy remains the same. Now, we 

introduce a curve,   ,y x  located in the upper half-plane (the same holds for the lower 

half-plane, of course), and we want to investigate the probability that the random walk, up to 

time ,n  remains constantly below this curve, which means that    S j j  for all 1,..., .j n   

 

Our representation, in order to investigate this phenomenon, will be the fact that the curve   

absorbs the energy. This means that, for any path which touches the curve, the corresponding 

energy disappears.  

 
 

In this example, the point A  sends its energy to both B  and C , but B  is on the curve we 

want to investigate, so this part of the energy disappears, and we are left with    
1

2
e C e A . 



4 
SCM Random Walks Prizes, 2016/08 

The curve we want to investigate will be called the critical curve. It may be considered as a 

"black frontier" (in the sense of a black hole), meaning that it absorbs all energy it receives, 

and sends back nothing. 

 

We have: 

 

Proposition 2. - Let  y x  be any critical curve, in the upper half-plane. The total energy 

left, at time n , is equal to the total probability to reach any of the points 
,n kA  below the curve, 

that is satisfying  k n , without ever touching the curve at any time before ( j n ). 

 

Proof of Proposition 2 

 

This is a mere rephrasing of the disparition of energy. Any time a path touches the curve, it is 

annihilated, so what remains is the paths which never touched the curve. 

 

If a time n  is fixed, and a curve   is fixed, we will call admissible a path with never touches it 

(at any time j n ). For any point A  in the plane, let  adN A  be the number of admissible 

paths which reach ,A  and  
 

2

ad

ad n

N A
p A   the probability to reach A  by an admissible path. 

Proposition 2 states that: 

 

   
 

, ,

n

n k ad n k

k n k n

e A p A
 

   

 

III. The case of an horizontal line 
 

We now compute the number of admissible paths when the critical curve is an horizontal line 

segment: 

 

Lemma 3. - Let 02y k  ( 0 0k  ) be an horizontal line segment. Let 
2 ,2n kA , with coordinates 

 2 ,2 ,n k  be any point that the random walk may reach, with 0.k k  The number of paths, 

starting at 0, finishing at 2 ,2n kA , which touch the horizontal segment at a time before 2n  is 

 2 ,2n kN A , where 
2 ,2n kA  is the symmetric of 

2 ,2n kA with respect to the line segment. 

 

Proof of Lemma 3 

 

This property is well-known, under the name of "reflexion principle" : 
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Let B  be the first time a path touches the segment (there may be several). There are as many 

paths from B  to A  than from B  to .A   

 

Since the coordinates of 
2 ,2n kA  are  02 ,4 2n k k , the symmetric of 

2 ,2n kA  is 
02 ,4 2n k kA 

. So the 

number of paths which touch the segment 02y k  at any time before n  is, by Lemma 1: 

 

 
02 ,4 2

0

2

2
n k k

n
N A

n k k


 
  

  
 

 

Therefore, the number of paths which reach 
2 ,2n kA  without ever touching the segment 02y k  

is: 

 

 2 ,2

0

22

2
ad n k

nn
N A

n k kn k

  
    

    
 

 

Proposition 4. - Assume that our critical curve is the line segment 02y k . The distribution of 

energy at time 2n  is: 

 

 2 ,2 2

0

221

22
n k n

nn
e A

n k kn k

   
    

     
 

 

Indeed, this follows immediately from the previous Lemma. 

 

We observe that, due to the absorption, this distribution of energy is not symmetric anymore. 

Starting at 0k k  and moving downwards, it first increases, reaches its maximum for some 

1 0k   and then decreases. 

 

Proposition 5. - Assume that our critical curve is the line segment 02y k . The energy left at 

time 2n  is: 
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 
2 2

1 0

222 1
2 1

2 2

n

n n
j

nn
e n

n kn j 

  
     

   
  

 

Proof of Proposition 5 

 

Let us look at the picture below: 

 

 
 

The critical line segment 02y k  has two effects : 

 

– No point 
2 ,2n kA  above this segment receives any energy at all; there is a drop of total 

energy equal to the probability to reach this point; 

 

– For every point strictly below this segment, there is a drop of energy equal to the 

probability to reach its symmetric. 

 

Since both terms are equal, the total drop of energy (that is the total energy "swallowed" by 

the segment), instead of reaching the points 
2 ,2n kA  not on the segment, is 

0

2
1

22

2

n

n
j k

n

n j 

 
 

 
 . 

Now, there is the single point 
02 ,2n kA  which is its own symmetric and should be counted only 

once; this proves Proposition 5. 

 

Corollary 6. - Let 02k  be a given threshold. The probability that the random walk never 

reaches this threshold at any time 2t n  is : 

 

 
2 2

1 0

222 1
2 1

2 2

n

ad n n
j

nn
p n

n kn j 

  
     

   
  

 

It tends to 0 when n .  

 

Indeed, when ,n  
2

0

21
0

2 n

n

n k

 
 

 
 and 

0

2
1

21 1

2 2

n

n
j k

n

n j 

 
 

 
 , since 

0

2
0

21
0

2

k

n
j

n

n j

 
 

 
 . 
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IV. The critical curve y x   
 

We now investigate the critical curve y x .  

 

A. Initial step 
 

At the beginning, we put an energy equal to 1 at the origin. The only admissible move (that is, 

a path which does not touch the critical curve) is 
1 1X   , which leads us to the point 

1, 1A 
 ; 

this point receives an energy equal to 1/2 (the other half is lost). 

 

 

 
 

 

Now, we compute the energy which arrives on the vertical 
4V . Only the points with even 

coordinates may be reached, namely 
2,0 2, 2 2, 4, ,A A A 

 (see picture above).  

 

We have : 

 

 1, 1 2,2

3
3

3 2 1
2

2

jN A A j
j



 
          

 

 

 

The symmetric 
2,2 jA  of 

2,2 jA  with respect to the line segment 2y   has coordinates 

 4,4 2 .j  Therefore : 

 

 1, 1 2,2

3
3

3 4 2 1
4

2

jN A A j
j



 
           

 

 

 

The energy sent by 1, 1A   to any of the points 2,2 jA  is, taking into account the attenuation: 
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 2,2 4

3 31

2 42
je A

j j

    
     

     
 

 

We find: 

 

 2,0

3

16
e A  ,  2, 2

3

16
e A   ,  2, 4

1

16
e A   . 

 

B. General step 
 

We now investigate the general step of the induction.  

 

We discretize the x  axis using the points of coordinate 
2n  and the y  axis using the points n . 

Let 2 , nn j
A  be the point of coordinates  2 , nn j , with 

2 2,...,nj n n   (so there are 
22 1n   such 

points). We want to compute the energy received by any of the points 2 , nn j
A  knowing the 

energy received by all the 
 

2
11 , nn j

A


. In order to simplify our notation, we set 
 

2
1 ,j n j

A A


  and 

2 ,k n k
B A . The points 

jA  and
kB  are below the curve if, respectively, 1j n   and  .k n   

 

Let  je A  be the energy received by each point 
jA  at the 1stn  induction step (supposed to be 

known) ; we want to compute  ke B , the energy available at the 
thn  induction step. 

 

The number of paths from 
jA  to 

kB  is : 

 

 
 

22

2 2

2 11

2 1( 1)

22

j k

nn n

N A B n k jn n k j

     
              
    

 

 

Let 
kB  be the symmetric of 

kB  with respect to the curve y n  ; the coordinates of 
kB  are: 

 2,2 .kB n n k    The number of paths from 
jA  to 

kB  is: 

 

 
2 1 2 1

2 1 2 4 1

2 2

j k

n n

N A B n n k j n k j

    
              
   

 

 

We observe, in these formulas, that j  and k  cannot have the same parity: the sum k j  or 

the difference k j  must be odd, otherwise there is no path. Indeed, the squares 
2n  are 

alternatively odd and even. 

 

Therefore, for 1j n   and ,k n  the amount of energy sent by jA  to kB  is: 

 



e (AJ ^ Bk )- 44)
22 n-1

(( 2n -1 A
1 i 7 •2n -1 + k - j -

( 2n -1 AA
Л 1 7 •4n -1 - k - j

-A A 2 J -A 2 J J

The total amount of energy available at each point Bk is obtained, summing upon j :

n - 2

e(Bt)- E
j--(n-1)2

<!)
22 n-1

(( 2n -1 A
2n -1 + k - j

. 1 J

( 2n -1

4n -1 - k - j
I 2 J

A

And the total amount of energy available at time n is the sum of these quantities, summing 
upon k :

n-1 n - 2

e (V )-E E
k--J j--(n-1)2

e (A)''( 2n -1 A
1 i 7 •2n -1 + k - j -

( 2n -1 AA
Л 17*4n -1 - k - j22 n-1 t 2 J A 2 JJ

C. Complete formula at step n

Let us set, for n > 1

w (n; jn-1
1 (( 2n -1 A ( 2n -1 AA

jn )- 22 n-1 2n -1 + j - jn-1

2 .
4n - 1 - jn - j-1

2 .

we have, for every jn:

e(aj)-
n-2 0

E
J„-1 --( n-1)2 Л=-2

and:

n-1 n - 2 0

e(V)- E E •••E
J--n2 j„-1 --(n-1)2 Л=-2

Here, V 2 denotes the vertical at time n2, below the curve, that is the set of all points A 2 
n n , j

with jn < n. We want to prove that e(V„2 ) ^ 0 when n ^ +да.

D. Analysis of a single term

Let us look at the final sum in the above expression, that is :

SCM Random Walks Prizes, 2016/08
9
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 
2

1

1 2 1 1 1

2 1 2 1
1

; 2 1 4 1
2

2 2n

n

n n n n n n
j n

n n

D n j n j j n j j



   


      
                  
    

  

 

Simple computations show that it may be written: 

 

 1 2 1 1 1 1

2 1 2 1 2 1
1

; 1 3 1
2

2 2 2

n n n n n

n n n

D n j n j n j n j    

         
                         
      

 

 

Assume that n  is even, 2 ,n m  so 
1nj 
 is odd, 

1 2 1.nj j    The number of terms in the above 

sum is 
12 2 1 nm j n j     ; this number is minimal for 1j n   (we have 1 term). It is 

maximal (namely 2 1n ) if we have 
1 0nn j    and 13 1

2 1
2

nn j
n 

  , that is 
1 .nj n    In 

this case,  1; 1.nD n j     

 

We also observe that the sum extends on both sides of the median term .n   

 

As we already sait, let 2n
V  denote the vertical at 

2 ,n  that is the set of points 2 , nn j
A . We have: 

 

 
  

 

 2 2
12

1

2

11 ,
1

;
n

n

n

nn n j
j n

e V e A D n j







 

   

 

The quantity  1; nD n j   may ve viewed as the proportion of energy sent by 
 

2
11 , nn j

A


 to the 

whole vertical 2n
V . It is an "attenuation coefficient", which is 1.  We observe that the total 

quantity of energy at step ,n   2n
e V  satisfies: 

 

 
    

 
  

 
  2 2 2 2

1 12 2
1 1

2 2

11 , 1 , 1
1 1

;
n n

n n

n n

nn n j n j n
j n j n

e V e A D n j e A e V
 

 

 

  
   

     

 

so it is decreasing at each step (this was obvious, since some energy disappears and no energy 

is created). Moreover, the maximum value of the energy is decreasing at each step: 

 

    2 2
1

1
, 1 ,

max max
n nn n
j jn j n j

e A e A



  

 

We also observe that the introduction of the critical curve leads to the fact that some energy 

disappears, because some paths do not exist anymore. It does not create any new path. 

Therefore, all "blocks" of terms which had their energy tending to zero in the normal scheme 

will have the same property in the new scheme. 
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V. Prizes offered 
 

After this presentation of the subject, and of some basic properties, we would like to offer three 

prizes. 

 

A. Prize 1 : 500 Euros 
 

In the case of the critical curve y x  (see above), prove that the energy received by the 
thn  

vertical, after attenuation due to the curve, tends to 0. 

 

Recall that, in the above notation, 
nV  is the set of points on the 

thn  vertical which lie below the 

curve. So we want to show that   0,ne V   when n .  

 

Of course, since this quantity is decreasing, it is enough to do it for a subsequence, but we 

want quantitative estimates, namely, for any 0  , we want to know explicitly the value of 
0n  

such that for all 
0n n ,  ne V  . 

 

B. Prize 2 : 1 000 Euros 
 

Fix any 0   and consider Khintchin's critical curve     1 2y xLog Log x  . Prove that 

  0,ne V   when n ; same as above : we want explicit quantitative estimates. 

 

C. Prize 3 : 1 000 Euros 
 

Fix any 0   and consider Khintchin's critical curve     1 2y xLog Log x  . Prove that 

 lim 0n
n

e V


  ; same as above : we want explicit quantitative estimates. 

 

D. General rules for participation 
 

Each prize will be given only once, to the best contribution. A contribution will be considered 

only if it is well written and complete. All details should be given.  

 

Please send the contributions (in English or in French) to contact@scmsa.com 

no later than June 30th, 2017. 

 

Everyone may participate (individuals, institutions, and so on). 

 

mailto:contact@scmsa.com

