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Abstract 

This works introduces a new algorithm for feature detection in noised data, independently 

from the dimension of the given data. The algorithm is based on the detection and isolation of large 

features and its operability is demonstrated in this thesis through the development of two 

techniques, based on it. The first uses the algorithm for features detection on images, using image 

stitching as metrics for comparison with existing techniques. It demonstrates excellent 

performances on tests datasets registering a success rate almost three times higher than existing 

techniques while being fast and presenting a unique characteristic in the amount of points it detects 

for homography, largely inferior in number but superior in quality when compared to other 

techniques. The second technique demonstrate the performances achievable by the algorithm for 

feature detection on time series, it was developed in the framework of the SmartLINAC project at 

CERN. The technique showed excellent performance, detecting consistently all areas of 

anomalies, and labelling them correctly, where existing techniques showed large amount of false 

positive and false negative labelling entries due to the noise present in the data. 

The algorithm’s core concept is to ignore ambient noise in the data by a series of pre-

processing techniques involving normalization, smoothing and thresholding, using noise’s 

statistical distribution’s attribute. Large areas are then isolated by blocks which’s characteristics 

can be used for comparison. 

The two techniques showed excellent performance in their range of application, proving 

the algorithm proposed in the thesis relevant and performant in its domain of application. 
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Introduction 

Noised data represents a constant challenge for scientists, even when using modern 

technologies (Yanfang Li, 2008) however; such data exists all around us: whether on images 

as in drones and satellite captures, or images taken with damaged or partially obstructed 

objectives, meteorological conditions. It also exists in all sort of captors and time series, 

whether it depends on source volatility, environmental influence or humans’ interactions. It 

can be stated that where there is data, there is potential noise. In small quantities, noise have 

little impact on existing solutions for features selection however, a growing noise results in a 

fast diminishing capability of those solutions. This represents a relevant problem as it leaves 

important quantities of data without solutions for features selection. 

The need to solve the problem of features detection on noised data occurred to us twice 

in the recent years. One concerned image taken from satellites and drones, as because of the 

noise intensity present on the images, no known technique could detect the necessary features 

in order to stitch them, making them essentially useless. The second time, it appeared from a 

collaboration with the European Organization for Nuclear Research (CERN). The institution, 

together with the International Cancer Corp and the Science and Technology Facilities Council 

highly emphasized the need for simpler-to-maintain-and-operate medical linear accelerators 

(LINACs). But data received from the captors presented a noise intensity such that none of the 

tested techniques succeeded in detecting consistently and with an accuracy judged enough 

according to the situation the features necessary to analyse the signal. 

As such, the scientific challenge presented is not only relevant as a novelty but in 

necessary to solve an engineering challenge. Tackling this challenge is meaningful for actors 

such at the aerospace industry but can also save lives when applied to areas such as medical 

LINACs. Key point detection is central to comparison between different data, whether it is to 

stitch images, compare sequences or changes, navigation , robotic mapping. This subject is 

therefore essential to advances in the domains mentioned above but not only, underlining the 

necessity to keep developing existing and new technique to maintain a state-of-the-art advance 

in this domain. 

Existing techniques tends to focus on precise sequences in data series showing 

significant features, borders, angles or changes are used in most common techniques, however 

experiments presented below shows that those features are easily impacted the sources of noise 

introduced in this chapter, resulting in features selection failure. 
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This context shows the necessity to develop an algorithm, allowing to process and 

detect features on noised data from different sources. 

The work presented in this thesis, is proven to be applicable on images and times series, 

while other applications are not demonstrated as they are out of scope, the research conducted, 

could be, be extended data as spectrometer imaging.  

The novelty presented in this thesis is an algorithm which, when implemented, allows 

key point detection on noised data, it is demonstrated through this thesis that the algorithm 

proposed offers performances often higher than existing solutions, while preserving a unique 

functioning approach. Although the different elements presented in the algorithm are based on 

existing techniques, their assembly and order of operation was never used before and represents 

a major advance. This innovation proves itself relevant through the results obtained and the 

implementation of the techniques in the industry, where already existing techniques failed to 

perform in both cases, for aerial capture stitching in Russian aerospace and for anomaly 

detection at CERN, Switzerland, the algorithm proposed and its implementation were 

successfully implemented. 

The core idea of the algorithm proposed in this thesis, is that noise is considered to be 

an integrant part of the data, that is should therefore not be isolated, treated, bypassed but just 

be taken as it is and spread according to a statistical approach, thus making it less relevant 

through its dissemination. Moreover, several key points, contained in a set with comparable 

noise statistical repartition, would see a similar repartition of the noise after filtering. The 

feature selection technique was from there adapted from this concept. Taking profit of this 

dissemination to isolate large, continuous key points. The combination of those idea in an 

algorithm and their application are the novelty the thesis is centred around. 
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1 Aim 

The aim of the work presented in this thesis is to propose an algorithm capable of 

detecting key points in noised data from different sources. The algorithm should be 

implemented in the form of features techniques for the different data sources. The techniques 

should demonstrate and delimitate the capacities of the algorithm proposed and should bring a 

solution to the issues presented in the Introduction. The elements of the problems are the 

following: 

Noise was shown multiple times as a challenge to key point comparison on images 

(Sarabjeet Kaur, 2017) (Zaragoza J, 2014) (Lu Y, 2018) (Nan Li, 2018), as shown in the 

mentioned articles, the issue has been approached several times, but no universal and highly 

performant solution stands out. In this context, experiences were performed in order to compare 

existing techniques when confronted to noise * (Y Donon et al, 2019). The techniques tested 

were Surf, Harris and Freak, three reputable implementations, using different approaches for 

features detection. The techniques where confronted to different noise with increasing 

intensity, as a result of these experiment, the most successful tested technique (Surf) showed 

an average success rate of about 31%, which was at the time insufficient to solve the problem 

Figure 1 Success rate of Surf, Harris and Freak in stitching together images issued from a noised dataset described later 
Error! Reference source not found. Error! Reference source not found.. *(Y Donon et al, 2019) 
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of aerial picture stitching the research originated from. Figure 1 Shows the three-technique 

mentioned above and compare their success rate in stitching together images issued from a 

noised dataset as described later in 3.7 Results. Most noised image can be stitched with a 

success rate of 30% of higher, but no technique seems able to tackle all noise sources presented 

above. 

Medical LINACs are complex platform used for cancer treatment (proton therapy, 

radiotherapy) and their use, especially in developing countries is highly impacted by frequent 

breakdowns and subsequent maintenance costs (David Pistenmaa, 2017). As such, the need for 

a breakdown prediction platform for linear accelerators was formulated into a joint project 

between CERN openlab and Samara University (Samara National Reasearch University, 2018 

). The experiment started using CERN’s LINAC 4 RF power source data, but first analysis 

showed their nature, noised to the extreme was making analysis using existing technique 

challenging and results lacking of precision * (Yann Donon A., 2019). Figure 2 highlight 

imprecisions of existing techniques detailed in * (Yann Donon A., 2019) when compared to 

manual data labelling. 

 

The same algorithm should solve both problems presented in this chapter, through 

different implementations relative to the data source presented.  

Figure 2 LINAC 4's data anomaly detection using existing techniques (Labelled 2, 3, 4), compared to the original labelling. 
All techniques shows significant imprecisions when compared to the original labelling. 
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2 Tasks 

As they are described above, it is understandable that although both paradigms are 

significantly different (images and time series), the problems encountered are in themselves 

very similar. As both problems appeared at the same period, they got often compared and 

preliminary work to solve both has been done in parallel. During this phase of pre-study, it was 

observed that once represented graphically, the approach of humans taking part to the project 

to understand both data sources was similar: looking at the data from a certain distance trying 

to guess general shapes that would differ from their environment. It is indeed a very human 

approach to be able to understand general patterns, or features, by taking a global picture, 

occulting details. This approach doesn’t only apply to vision, finding a way even in therapeutic 

approaches in “evenly-suspended attention” technique (Freud, 1912). As such and as existing 

techniques hadn’t met problem solving expectations it was decided to implement a technique 

to interpret image using the same concept creating the basis for the first technique developed 

in this thesis. Presenting excellent results at first, the technique used was broken down and 

adapted re-used for preliminary studies on the time series presented second in this thesis, again 

registering unique performances. From this point, the technique was refined and became a 

research axis creating the background for this thesis. As such, the following thesis develops the 

successful deployment of two techniques developed on the algorithm introduced on Figure 3. 

The approach chosen to solve both problems is based on a single algorithm involving 

the same set of operations adapted to different data paradigms, one being images and the second 

time series. 

The algorithm presented hereafter, which is the core of this thesis and the subsequently 

developed were constantly kept as simple as possible both in terms of workflow and in terms 

of engineering, while keeping them close to the original idea of mimicking human’s behaviour 

when confronted to the original datasets. 
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As defined above, two engineering issues revolves around the algorithm presented. No 

tested existing technique managed to solve the mentioned problems in a way that could be 

considered successful (anomalies identified with enough confidence; noised images 

consistently stitched). The problems having to be addressed are: 

 Aerial picture stitching (noised images).  

 Anomaly detection in LINAC 4’s plasma source (time series) 

Both problems can be solved using the identification of key features in the data; the 

idea behind this thesis is to find an algorithm allowing the detection of key features in the 

different datasets and to two techniques allowing features comparison and treatment. As such 

the aims is to develop two technique allowing key points identification and comparison on 

noised data. The techniques should be similar based on the algorithm presented above, thus 

demonstrating its polyvalence. The resulting techniques should demonstrate significantly 

higher performances than other existing techniques when confronted to noised data, while 

maintaining a comparable resources consumption. 

Figure 3 Representation of the algorithm presented in this thesis independently from the type 
of data that is to be treated. 
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Tested on a noised images dataset, existing techniques succeeded at best in 23%  of 

tested images * (Yann Donon A., 2019), the technique implemented in the framework on the 

thesis should reach a success rate of twice higher or more on the same dataset, or twice more 

results than obtained so far. 

In the same way, exiting techniques manage to identify jitter on CERN’s LINAC 4 data 

with 79% of confidence. The technique developed in our experiment should allow a confident 

superior to 95%. 

 Developing a procedure allowing key points identification with high precision on 

noised images. 

o Compare the efficiency of this technique on different datasets. The objective is 

to obtain more than 46% success rate in image stitching on the noised dataset 

used to compare existing techniques. The reference number was selected as it 

represents a success rate twice higher the currently best performing technique. 

o Compare the technique’s metrics (accuracy, processing time, success rate) when 

solving a stitching task (used as a reference for key points comparison). 

o Measure the technique efficiency different noise conditions (different noises 

types and intensities). 

 Developing a procedure allowing key points identification with high precision on 

noised time series. 

o Compare the efficiency of this technique on CERN’s LINAC datasets (more 

than 95% success rate in noise identification). 

o Compare the efficiency of this technique’s metrics (accuracy, success rate) to 

identify anomalies on the given data (used as a reference for key points 

comparison). 

2.1 Contributions 

The contributions offered in this thesis are centred around the algorithm presented in 

Figure 3, the algorithm was developped in the framework of this thesis, and the objective is to 

prove its relevance. Past the tasks definition, the thesis shows the functioning and performances 

of the algorithm proposed when applied to images and time series. The contributions are 

structured as following: 

 Description of the problem of key point detection on images 

o Description of existing techniques 
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o Description of the process developped on the base of the algorithm 

proposed for key point detection on images (Blurred Image Matching, 

BIM) 

o Comparison between BIM and existing techniques 

 Performances 

 Specific features 

o Conclusion over the problem of key point detection on images 

 Description of the problem of key point detection on time series 

o Description of existing techniques 

o Description of the process developped on the base of the algorithm 

proposed for key point detection on images (Series with Noise 

Featuring, SNiF) 

o Comparison between SNiF and existing techniques 

 Performances 

 Specific features 

o Conclusion over the problem of key point detection on time series 

 Thesis conclusion taking in account the two processes, around the algorithm 

proposed. 

In short, the innovation proposed in this thesis is a new algorithm for key point detection 

on noised data, supported by two implementations of this algorithm for key point detection on 

noised images and noised time series. 
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3 Key point detection on noised images 

As described earlier, the aim of this thesis is key point detection on noised data, with 

an emphasis on two different sources, one being noised images. This chapter introduces the 

problem, starting by describing existing techniques, followed by the solution developped in the 

framework of this thesis and a description of the results obtained. 

The objective is to find on two images 𝐼(𝑥, 𝑦) and 𝐼’(𝑥’, 𝑦’), sets of points (𝑥, 𝑦) on 𝐼 

and (𝑥’, 𝑦’) on 𝐼’ corresponding to the same real-world object. With a minimal dependence to 

the prior presence of noise on the image. As such the mapping (𝑥, 𝑦) →  (𝑥’, 𝑦’) researched 

should satisfy consistency constraints and minimize the energy cost 

represented  𝐸(𝐼, 𝑥, 𝑦, 𝐼’, 𝑥’, 𝑦’) as in its simplest form: 

Equation 1 image point matching minimized energy cost 

𝐸 =  ‖𝐼(𝑥, 𝑦) −  𝐼’(𝑥’, 𝑦’) ‖ 

3.1 Existing techniques 

The initial need, causing the development of a key point detection technique for noised 

images followed the presentation of a dataset of aerial captures that were to be stitched. Those 

captures presented noise to a degree making existing technique to consistently fail performing 

this given task. The first test dataset used was from drone captures in mid altitude and presented 

Lenses partial 

obstruction 

noise 

Meteorological 

conditions induced 

noise example 

“cloud” 

Figure 4 Example of aerial view image including 
meteorological conditions induced noise, blur and partial lenses 
obstructions. 
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mainly three categories of noises : meteorological conditions induces noise, blur and partial 

obstruction on the lenses as represented in Figure 4. 

Nowadays, most commonly used and implemented feature detection algorithm includes 

corner and edge description (Harris, FAST) or feature description (SIFT, SURF, FREAK) 

(Pooja Ghosh, 2015) (Gary Bradski, 2008). Other algorithms exists and are commonly used as 

BRIEF, or ORB, but they are alternatives to already mentioned techniques, BRIEF is an 

alternative for SWIFT taking less memory, ORB stands for “Oriented FAST and Rotated 

BRIEF”, which speaks for itself (OpenCV, 2019 ). 

In the framework of this research, Harris (Accord.net, 2019), SURF (Accord.net, 2019) 

and FREAK (Accord.net, 2019) (Alexandre Alahi, 2012), were selected for comparison based 

on their reputable implantation in the Accord.net framework (Souza, 2014). Consistency of 

some key results have also been controlled using a similar implantation using the OpenCV 

framework (Rustam Paringer, 2020). 

All those techniques succeeds to identify at least a pair of matching points however, the 

amount of irrelevant points is too important for the comparison algorithm described in 3.7 

Results to perform a correct filtering. Which leads directly to the feature comparison to fail. 

The three following sub-chapters describes the existing techniques tested in the 

framework of this thesis. 
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3.2 Harris corners detector 

Chris Harris and Mike Stephens developed an early corner detection attempt. The 

technique is based on the research of displacement intensity for displacement. It focuses on 

image regions containing texture or isolated features, combining corner and edge detection. 

The technique was first developed for natural imagery in 1988 and is still commonly used. 

(OpenCV, 2019 ) (Chris Harris, 1988) 

Figure 5 Shows feature detection using the Harris operator on the image “Lena”. It is 

noticeable that as the technique description indicates, points are mainly found in corner or 

edges (intersections), such as illustrated in the focus.  

  

Figure 5 Shows an image on which Harris feature detection has been 
applied. White dots represents features selected by Harris as significant for a 
comparison. Focus on the images shows three points locations characteristic of the 
technique.  
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Figure 6 shows an application of Harris corner detection on the image introduced in 

Figure 4. The image illustrates the limits of the techniques, on the enlargements showed the 

left of Figure 6 three points are situated around a building, two of them are valid, showing that 

the technique is not completely disabled. However, one of them is calqued on a lens’s partial 

obstruction point. In this image, most features found are located on such points, as illustrated 

in the enlargement on the right. This results in the technique being unable to perform to identify 

features with enough precision of an algorithm such as RANSAC.  

Figure 6 Shows a Harris implementation for features detection, using the 
Accord.net framework. The image shows that the techniques holds on camera lenses’ 
partial obstruction, and detects no points in the clouded area. 
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3.3 SURF 

SURF is essentially a speeded-up version of the SIFT algorithm (Lowe, 2004). It was 

developed in 2006 and uses a Hessian matrix measurement detector and a distribution-based 

descriptor (Haar wavelet sums around points of interest (Jin-Sheng Guf, 1996)), after 

transforming the image using Laplacian of Gaussian approximation (Herbert Bay, 2006). 

However, SURF simplifies existing techniques and process. SURF was first described as 

outperforming existing techniques in terms of repeatability, distinctiveness and robustness. 

(OpenCV, 2019 )  

Figure 7 Shows feature detection using SURF on the same image than previously. 

Orientation on interest point (green lines in circles on Figure 7) are determined by the largest 

sum of Haar wavelet responses of size 4σ in a radius of 6σ of the detected point of interest. The 

circle’s colour depends on the Laplacian sign, blue if negative, red if positive (Evans, 2009). 

Features are mostly found on areas where the image is gradually changing as illustrated Figure 

7.  

  

Figure 7 Shows an image on which SURF feature detection has been 
applied. Circles’ center represents points selected by SURF as significant for a 
comparison. Focus on the images shows three points locations characteristic of the 
technique. 
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The Figure 8 shows an application of SURF corner detection on the image introduced 

in Figure 4. It is understandable from the image that the technique is heavily influenced by the 

noise present on the image. In particular in the sample selected on the left, where when 

compared to other samples, where a similar feature can be found, following the “cloud”. The 

sample enlarged on the right on the image shows on the other hand shows the how the point of 

interest orientation can be wronged by lenses obstructions. As previously, some of the features 

found are relevant and would allow operations based on their however tests showed they were 

insufficient in this context to perform a RANSAC operation with an acceptable success rate. 

Figure 8 Shows a SURF implementation for features detection, using the 
Accord.net framework. The image shows how the technique is influenced by noise. 
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3.4 FREAK 

Fast Retina Key-point (FREAK) is a descriptor inspired by human retina visual system. 

It computes a cascade of binary string using a retinal sampling pattern. The technique was 

developed in the “Ecole Polytechnique Fédérale de Lausanne (EPFL)”, in Switzerland in 2012. 

It was developed specifically for embedded applications and tested by its authors as in general 

more robust and faster to compute, with a lower memory consumption than SIFT, SURF and 

BRISK. (Alexandre Alahi, 2012) 

Freak uses a coarse-to-fine descriptor (Hantao Yao, 2016) and successive cascade of 

comparison based on human retina sampling system (Alexandre Alahi, 2012). Figure 9 shows 

points distribution after an image analysis using FREAK, points are mostly located on 

extremities and borders. 

  

Figure 9 Shows an image on which FREAK feature detection has been 
applied. Circles’ center represents points selected by FREAK as significant for a 
comparison. Focus on the images shows three points locations characteristic of the 
technique.  



Key point detection on noised images  
 

  16 

 

Figure 10 shows an application of FREAK corner detection on the image introduced in 

Figure 4. The features points representation is very similar than the one presented above in 3.2 

Harris, the most obvious difference to the human eyes is the amount of features found, 

significantly greater than from the technique mentioned above. The enlargement presented on 

the left of the image shows the same area than on Figure 6, presenting the same characteristics, 

even if more points are present in this case, they tends to be too influenced by noise present on 

the lenses. Comparative analysis made on the points found in the clouded corner are 

insignificant as they depend entirely on the noise in the area. The enlargement presented on the 

left show 3 points, one of them only being attached to a noise sample. Again however, the 

accurate features although existing, didn’t allow the RANSAC algorithm to perform with 

enough confidence.  

Figure 10 Shows a FREAK implementation for features detection, using the 
Accord.net framework. The image shows although it is less visible than in Figure 6
Shows a Harris implementation for features detection, using the Accord.net framework. 
The image shows that the techniques holds on camera lenses’ partial obstruction, and 
detects no points in the clouded area that the techniques holds on camera lenses’ partial 
obstruction it moreover still detects few points in the clouded area.  
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Figure 11 shows feature detection on Lena, as 
introduced in Figure 5, Figure 7 and Figure 9s. Three blobs are 
visible according to the processing steps described further in this 
chapter (one represented in red on the left and two in blue). 

3.5 Blurred Images Matching  

Blurred Image Matching (BIM) * (Y Donon et al, 2019) * (Yann Donon A. K., 2019) 

* (Yann Donon R. P., Brightness normalization for Blurred Image Matching, 2020) * (Yann 

Donon R. P., Parameters selection for Blurred Image Matching, 2020) * (Rustam Paringer, 

2020), unlike techniques presented previously detects features (blobs) on the images, ignoring 

the noise through a serie of preprocessing described further in 3.6 BIM process. Resulting in 

performances competing with other techniques on non noised sets but clearly overtaking their 

performances when dealing with noised sets as presented further 3.7.3 aResults evaluation. 

Figure 12 shows blobs detexted on the same image presented earlier in this chapter. Unlike on 

the iamges presented in Figure 6, Figure 8 and Figure 10, noise in completely ignored in BIM 

results, in comparison with Harris, SURF and FREAK. Instead the technique locate a large 

area (blob) in th middle of the image.  

  

Figure 12 echoes with Figure 4, presenting BIM-s blob 
detection after the pre-processing steps presented in 3.6 BIM
process. This specific feature detection detects 5 points, which is 
sufficient for a homography, as in the case of this image all the 
points are usable. 
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3.6 BIM process 

Although already mentioned technique presents in most cases very good performances, 

BIM takes a different approach than its predecessors, the technique is based on image pre-

processing and blobs detection. The reason behind this radical change in approaches is that 

BIM was primarily developed with for objective to detect features on noised images, therefore 

pre-processing steps are oriented towards noise compensation. 

3.6.1 Process presentation 

The following chapter presents an example based on two noised images to be matched 

together through their features. The matching evaluation is made using stitching in this research  

the two images do not present level of noise that wouldn’t make it possible for other techniques 

to stitch them and are only used as a process explanation. Figure 13 shows the original images 

used to demonstrate the stitching process. 

Figure 14 shows BIM’s image stitching process, as detailed in chapter 3.6 BIM. With 

a numbering corresponding to the one introduced in the algorithm, presented in Figure 3. 

  

Figure 13 The two original images used to demonstrate BIM’s stitching process. 
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Figure 14 Illustrated BIM process used for image stitching. 

Algorithm’s steps 

Data-related steps 

Experimentation related steps 
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3.6.2 Histogram normalization 

Histogram normalization (algorithm’s step 1 as on Figure 3 and BIM process’ step 1 as 

on Figure 14) consists of changing pixel’s intensity range on an image, resulting in generally 

augmenting image’s contrast or to create consistency in datasets. This achieves two desirable 

effect for BIM, it first attenuates the effect of noise due to brightness differences between 

images, and second, it allows a more pronounced distinction of features, which is useful to 

distinguish blobs. Histogram normalization can be done on both grayscales and coloured 

images. In the second case, colour histograms (red, green, blue) are separated before the same 

steps are applied than for grayscale histograms. BIM uses histogram normalization on coloured 

images. The formula used, where the image I, the image minimum and maximum intensity, 

respectively 𝑀𝑖𝑛 and 𝑀𝑎𝑥, the resulting image minimum and maximum intensity, respectively 

𝑛𝑒𝑤𝑀𝑖𝑛 and 𝑛𝑒𝑤𝑀𝑎𝑥, corresponds to the following: (Rafael C. Gonzales, 2007) 

Equation 2 Image histogram normalization 

𝐼ே = (𝐼 − 𝑀𝑖𝑛)
𝑛𝑒𝑤𝑀𝑎𝑥 − 𝑛𝑒𝑤𝑀𝑖𝑛

𝑀𝑎𝑥 − 𝑀𝑖𝑛
+ 𝑛𝑒𝑤𝑀𝑖𝑛. 

BIM’s first step consist of the image brightness comparison and correction. As showed 

in chapter 3.6.3 Brightness correction, the technique’s performances are influenced by the 

image brightness. A brightness difference exceeding 3% leads according to experiments results 

in significantly lower quality results.  

Without histogram normalization, it is possible to match images presenting different 

level of brightness by finding which combination of corrections are the most efficient, however, 

as shown later in 3.6.3 Brightness correction, this technique places the images two different 

correction spectrum, depending on their brightness, as illustrated in Figure 16 * (Yann Donon 

Figure 15 Results of brightness correction and matching between a pair of images. The closer the color is to green; the 
more points were found with a combination of brightness correction. 1) a pair of images before histogram normalization, 2) the 
same pair after histogram normalization. 

1. 2. 
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R., Brightness normalization for Blurred Image Matching, 2020) shows two images 1.a. and 

1.b. going through the BIM stitching processing. Their original histogram distribution shape 

(RGB distribution) looks similar (2.a. and 2.b.), as both images are taken in the same terrain, 

but their brightness level is widely different, making the histogram being distributed on 

different sides of the RGB spectrum. In this use case, the normalization is applied on each 

colour plane separately. After normalization (3.a. and 3.b.), the images present the same 

average brightness (by design, 128 as histogram normalization uses mean brightness). The 

histogram has been flattened, resulting a contrast augmentation, which shows helpful as it 

increases BIM’s found amount of shapes by an average 87% when compared to the same 

image, with the same brightness, before normalization. * (Yann Donon R., Brightness 

normalization for Blurred Image Matching, 2020) 

1.a. 1.b. 

 

2.a. 2.b. 

Figure 16 Process of image brightness normalization and the 
image’s histogram before and after processing (Yann Donon R., 
Brightness normalization for Blurred Image Matching, 2020) 

3.a. 3.b. 

4.a. 4.b. 
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Figure 17 shows the images introduced in Figure 13, after histogram normalization 

processing. The result is less flagrant than in Figure 16 as the colour repartition in Figure 17 

(wide predominance of red and green) is from the source wider than in Figure 13, resulting in 

fewer changes when flattening the histogram.  

3.6.3 Brightness correction 

Difference in brightness between images is a source of noise that must be taken in 

consideration. This step is not described in the algorithm (Figure 3) as it is relative to the data 

source and the feature selection process only, it corresponds to Figure 14’s step 1.1. BIM’s pre-

processing steps, in particular the one described in 3.6.6 Thresholding is very sensitive to 

brightness difference, experiences showing optimal performances when the brightness 

difference remains under 5% * (Yann Donon R., Brightness normalization for Blurred Image 

Matching, 2020). Average brightness is arguably pixel’s most significant characteristics, yet 

no standard formula exists for its measurement. In this thesis, colour vector length mean 

arithmetic model was used (Sergey Bezryadin, 2007). Where: 𝐵𝑟, the average brightness, 𝑛, 

the number of pixels in the image and 𝑟, 𝑔, 𝑏 the pixel value in the RGB spectrum: 

Equation 3 Image average brightness 

𝐵𝑟 =  
1

𝑛
∙ ෍

(𝑟௜ + 𝑔௜ + 𝑏௜)

3

௡

௜ୀ଴

. 

Figure 17 Images presented in Figure 13 The two original images used to demonstrate BIM’s stitching process after 
Histogram normalization. 
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As such, for an image I, it is possible to determine if normalization is necessary if the 

following statement is false: 

Equation 4 Normalization necessity calculation 

ฬ
𝐵𝑟ூଵ − 𝐵𝑟ூଶ

𝐵𝑟ூଵ + 𝐵𝑟ூଶ
ฬ < 0.05. 

Experiments were performed in * (Yann Donon R., Brightness normalization for 

Blurred Image Matching, 2020), a pair of images were selected and their brightness corrected 

in a range of ± 256. Registering for every combination the amount of points matched between 

the images, resulting on a graphic in two parallel diagonals, one for every combination of 

brightness correction and its opposite (for example for an image having a difference of 20, (-

10:10) and (10:-10)) , with a distance relative to the image’s brightness difference as showed 

on Figure 18. 

As stated in * (Yann Donon R., Brightness normalization for Blurred Image Matching, 

2020), on Figure 18, the area directly below the diagonal Figure 18.1.b) shows dispersed points; 

those are either noise or isolated points that are very distinctive shapes on an image. Brightness 

change has a lesser impact on such shapes; they are usually caused by a sudden change of 

colour in the landmark (such as a red roof in a green forest). The area directly above the 

diagonal (Figure 18a.1.c) is empty as it represents the part of the array where images are 

brightness correction of both images diverge in opposite directions; any point is this area is 

almost certainly noise. 

1.b. 

1.a. 

1. 1.c. 2. 1.a. 

2.a.  

Figure 18 Difference matching results' histogram. On the left, the 
image's average brightness difference is 120% higher than on the right. The 
original image is the same in both 1. And 2. 
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Experiments represented in Figure 18 also showed that all points were found in a 

brightness level ranging from 30 to 202, with a steady peak in ± 0.25σ, or between a brightness 

of 89 and 113 * (Yann Donon R., Brightness normalization for Blurred Image Matching, 2020). 

Figure 19 shows the average of points found on a dataset depending on the images’ average 

brightness. As stated above, histogram normalization increases the average amount of point 

found in an image, however it is important to notice that the amount of points found in the ± 

0.25σ of the brightness distribution curb is the same. 

BIM’s default has accordingly been set to 113 as it is the closest value in the ± 0.25σ 

to the mean brightness applied by histogram normalization, 128, thus minimizing changes. 

Figure 17 shows the images introduced in Figure 13, after histogram normalization and 

brightness correction processing. The average brightness difference between Figure 17 and 

Figure 20 is -15, bringing the image from 128 to 113. The difference can be considered little 

for the human eye but it above the 5% recommended for an optimal use of BIM. 

Figure 19 Represents the distribution of points found with and without brightness normalization. The curb using 
brightness normalization has a significantly higher variance. (Yann Donon R.). 
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3.6.4 Grayscale transformation 

Grayscale transformation was used in order to simplify and thus accelerate the blurring 

process and thresholding process. As such, this step is not described in the algorithm presented 

on Figure 3 but it corresponds to Figure 14’s step 1.2. Accord.net framework was used to 

perform this action, using the BT.709 algorithm for transformation with the following 

coefficients (Accord.net, 2019): 

 Red: 0.2125. 

 Green: 0.7154. 

 Blue: 0.0721. 

ITU-R Recommendation BT.709 is a well-known algorithm for grayscale 

transformation standardized in 1990, it is commonly used for HDTV systems. (International 

Telecommunication Union, 2015) 

Figure 21 shows the images introduced in Figure 13, after step 1 to 3 as represented on 

Figure 14. 

Figure 20 Images presented in Figure 13 The two original images used to demonstrate BIM’s stitching process and 
Figure Figure 17 Images presented in Figure 13 The two original images used to demonstrate BIM’s stitching process after 
Histogram normalization.  after brightness correction, here the images presents an average brightness of 113. 
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3.6.5 Gaussian blurring 

The way BIM uses to treat sets of noised images is not to approach the noise specifically 

in any way, but it a way to “drawn it in more noise” * (Y Donon et al, 2019). Noise in negated, 

using Gaussian blurring, this step corresponds to the algorithm’s (Figure 3) and BIM’s process 

(Figure 14) step 2. Gaussian blurring is a filter based on the Gaussian function (Weisstein, 

2019) and its application on an image pixel for transformation. The pixel’s characteristics 

transformation for a two dimensional transformation is the following where 𝑥, 𝑦 are pixels 

coordinates on an image and σ the Gaussian distribution’s standard deviation (Shapiro Linda, 

2001): 

Equation 5 Gaussian blurring transformation 

G(𝑥, 𝑦) =
ଵ

ଶగఙమ
𝑒

ି
ೣమశ೤మ

మ഑మ . 

According to this formula a convolution matrix is applied to the image in which each 

pixel’s value is recalculated according to a weighted average of the pixels neighbouring them 

in a radius depending on the 𝜎 value. The closer the pixels from the convoluted pixel, the higher 

its weight. In our formula, the 𝜎 value is calculated in function of BIM’s optimal kernel size 

(ksize) according to the function * (Yann Donon R. P., Parameters selection for Blurred Image 

Matching, 2020): 

Figure 21 represents the images introduced in Figure 13 The two original images used to demonstrate BIM’s stitching 
process after Figure 14 Illustrated BIM process used for image stitching’s steps 1, 2 and 3, Grayscale transformation using BT709 
algorithm. 
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Equation 6 Gaussian sigma calculation as used by OpenCV 

𝛼 = 0.3 ∗ ൫(𝑘𝑠𝑖𝑧𝑒 − 1) ∗ 0.5 − 1൯ + 0.8. 

Used as default parameters by OpenCV Gaussian blurring function (OpenCV, 3). 

Figure 22 illustrate how details disappears in their surroundings, blending into larger 

blobs. It is those blobs that are used by BIM as features as described in 3.6.7 Shape contouring 

blobs comparison and 3.6.8 Convex hull blobs comparison 

Noise, just like details of an image is blend into larger shapes. Smaller shapes as seen 

on the bottom left of Figure 22 represents noise for BIM’s applications, on this image, shapes 

are too small and too precise (therefore sensitive to change) to be compared with precision. 

However, on the bottom right image, large and characteristic blobs can be observed, it is that 

kind of blobs that can be compared between each other. 

The necessity for the technique to present larger shapes is confirmed by Figure 23, in 

this figure, the same pair of images are compared, with different threshold values (Y axis) and 

different blurring values, starting from 0 (X axis). Red indicates the absence of matches 

between images, yellow its presence and boxes going towards green indicates more positive 

matches. On the figure, images presenting no or little blur before comparison are represented 

on the right of the image, the further to the right, the more features matches between the two 

Figure 22 Examples of Gaussian Blurring on an eye image with for both image their counterpart after thresholding and 
edge detection. 



Key point detection on noised images  
 

  28 

 

images, thus highlighting the need, up to a certain degree, to apply blurring to the images in 

BIM’s process. 

Experiments presented in a previous article shows that the ideal amount of point found 

is at its peak with a Gaussian kernel size of 21 and a ± 0.25σ range of statistical repartition 

between 12 and 30 * (Yann Donon R. P., Parameters selection for Blurred Image Matching, 

2020). Figure 24 illustrates the amount of points found depending of the Gaussian kernel size. 

Consequently, in the absence of specific parameters, 21 is used as the default Gaussian kernel 

size. 

 

Figure 23 Partial blob match count between two pairs of images depending on Gaussian Kernel size (X) and 
Thresholding value (Y). Overlaid, the statistical peak of point found on a dataset, as described later in the document. 

-0.25σ +0.25σ Peak 
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Figure 25 illustrates the pair of images illustrated earlier in 3.6.1 Process presentation 

after Gaussian blurring operation, with a kernel size of 21 and the sigma calculation presented 

above.  

  

Figure 25 represents the images introduced in Figure 13 The two original images used to demonstrate BIM’s stitching 
process after Figure 14 Illustrated BIM process used for image stitching’s steps 1, 2, 3 and 4, Gaussian transformation with a 
kernel size of 21. 
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Figure 24 Statistical repetition of points found depending on Gaussian kernel size. 
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3.6.6 Thresholding 

Thresholding is a way to create a binary image (black and white) through a process of 

image segmentation. It is used in BIM to reform blobs after the Gaussian blurring. It 

corresponds to the algorithm’s (Figure 3) and BIM’s process (Figure 14) step number 3. 

Thresholding operates according to an image’s pixel intensity and a constant 𝑇, the 

thresholding value. For every pixel 𝐼௜,௝, for 𝐼௜,௝ < 𝑇 the pixel is changed to black and for 𝐼௜,௝ >

𝑇 to white. This operation is essentisal for BIM’s functioning and yet a very sensible point as 

described in * (Yann Donon R. P., Parameters selection for Blurred Image Matching, 2020) 

Thresholding depends is relative to individual colour channels brightness, Figure 26 

shows the recapitulation of images being matched by blobs depending on different Gaussian 

kernel radius (axis X )and thresholding values (axis Y). Figure 26.a. shows the recapitulation 

when all the image’s channels are compared (R,G,B) , Figure 26.b. shows a recapitulation from 

the same source images but when only one colour channel is selected a distinctive part of the 

Figure 26.a appears (highlighted in the image). As such, every recapitulation is separated in 

three sources, specifically visible in high threshold value ranges thus making difficult to select 

an ideal threshold value.  

Figure 26 a. represents the matched points array of an 
image. B. Represents the same image matched points when the blue 
canal only is retained on the image. (Yann Donon R. P., Parameters 
selection for Blurred Image Matching, 2020). 

a. 

 

b. 
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These issues’ impact is however greatly diminished by histogram normalization as 

described in chapter 3.6.2 which fixes a standard brightness for each pixel. Figure 27 highlights 

these three channels, in the pair of images matched, the blue channel is predominant, creating 

“trenches” as highlighted in the image.  

This situation is explained as some blobs with uniform colour falls either above or under 

the threshold value. As the Gaussian blurring has for effect to make uniform some areas, they 

can fully disappear over a single threshold value difference as illustrated in Figure 28.  

 

It is possible however to define a preferred thresholding value, as for the brightness and 

blurring value, a range have been selected, corresponding to the peak’s ± 0.25σ of blobs 

matches on an example dataset, or a threshold value between 101 and 115 with a mean as 109, 

which is selected as a default value for BIM. 

Figure 27 estimated representation of trenches between color 
channel pikes. It is noticeable that both sides of the trenches fits together 
closely. (Yann Donon R. P., Parameters selection for Blurred Image Matching, 
2020). 

Figure 28 Same image with different threshold values of one on the right part of the figure. 
(Yann Donon R. P., Parameters selection for Blurred Image Matching, 2020). 
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Figure 30 shows the reference image introduced in 3.6.1 after the thresholding process. 

3.6.7 Shape contouring blobs comparison 

One of the techniques used for blobs comparison is shape contouring. Blobs contour 

are approximated using The-Chin contour algorithm (Teh, 1989). It corresponds to the 

algorithm’s (Figure 3) step 4 and is identified on Figure 14 as step 4.1. The algorithm computes 

each shapes and determines support regions for each points making the contour approximation, 

before selecting dominants points by non-maximum suppression (Jan Hosang, 2017). Resulting 

points are used to approximate every blobs’ contours 

Figure 30 represents the images introduced in Figure 13 The two original images used to demonstrate BIM’s stitching 
process after Figure 14 Illustrated BIM process used for image stitching’s steps 1, 2, 3, 4 and 5, thresholding with a value of 109.

Figure 29 Statistical repetition of points found depending on Threshold value. (Yann Donon R. P., Parameters selection 
for Blurred Image Matching, 2020). 
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Figure 31 illustrate the image after The-Chin contouring, border detection was applied 

on thresholding to make the image more understandable for the reader’s eyes. On the right, the 

contours are applied on the thresholded image, on the right the contours are applied on the 

original image for comparison.  

Shapes are compared (Rustam Paringer, 2020) Shape contours comparison is done 

according to the following calculation: 

Equation 7 Shape contours comparison 

𝐼௠(𝐴, 𝐵) = max
௜ୀଵ..଻

ห𝑚௜
஺ − 𝑚௜

஻ห

ห𝑚௜
஺ห

. 

Where 𝑚௜
஺ = 𝑠𝑖𝑔𝑛(ℎ௜

஺) ∙ log ℎ௜
஺ and 𝑚௜

஻ = 𝑠𝑖𝑔𝑛(ℎ௜
஻) ∙ log ℎ௜

஻ and ℎ௜
஺, ℎ௜

஻are the Hu 

moments of shape 𝐴 and 𝐵 , respectively. It allows to determine whether blobs present similar 

shapes independently from their size. 

And the perimeter comparison to the following: 

Equation 8 Shape perimeter comparison 

𝐼௣(𝐴, 𝐵) = ฬ
𝑃஺ − 𝑃஻

𝑃஺ + 𝑃஻
ฬ. 

Figure 31 represents the images introduced in Figure 13 The two original images used to demonstrate BIM’s stitching 
process after Figure 14 Illustrated BIM process used for image stitching’s steps 1, 2, 3, 4, 5 and 6.a, Shape contouring using The-
Chin algorithm. The right image presents shape contouring directly applied on the original image for comparison. 
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Where 𝑃஺ and 𝑃஻ are the perimeter of shape 𝐴 and 𝐵. Which allows to compare blobs 

in size. 

Shape contours are considered equal if the statement 𝐼௠ < 0.15 and 𝐼௣<0.1 is correct, 

thus meaning the blobs are of comparable shape and size, corresponding to the algorithm’s 

(Figure 3) and BIM’s process (Figure 14) step’s 5. 

Points are extrapolated from the blob’s centroids 𝑐 calculated by the shape’s arithmetic mean 

according to the following formula for 𝑛 points in Q.  

Equation 9 Shape’s arithmetic mean 

𝑐 =  
1

𝑛
෍ 𝑄௜

௡

௜ୀଵ

. 

This technique was developed in a second time as BIM struggled in detecting images 

presenting some specific kind of noises as described further in 3.7 Results. In general, Shape 

contouring allows comparison with a higher confidence and precision than convex hull. 

However, it is more sensitive to blobs contour alteration and therefore less noise resilient, 

consequently, both techniques are used in parallel. 

3.6.8 Convex hull blobs comparison 

The second approach selected for blobs comparison was convex hull contouring, using 

the, Graham scan algorithm (Ronald Graham, 1983). Convex hull consists for a set of points 𝑥 

to find the smallest convex polygon having in or on its boundaries the full set of points 𝑄 

(Jarvis, 1973). It corresponds to the algorithm’s (Figure 3) step 4 and is identified on Figure 14 

as step 4.2. 

Graham scan algorithm selects a point 𝑥଴that will necessarily be on the convex hull 

(such as the point having the lowest y-coordinate). Remaining points 𝑄ଵto 𝑄௡ are sorted 

ascendingly and contraclockwise by polar angle relative to 𝑄଴. Then, points are added to the 

convex hull following the rule: 

 If the next point 𝑄௜is on the left of 𝑄௜ିଵ, 𝑄௜is added to the hull 𝐻 

 If the next point 𝑄௜is on the right of 𝑄௜ିଵ, elements are removed from H until 

the first condition is true. 
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Convex hull are calculated from all blobs in the image and those answering to the 

conditions presented under are considered relevant as described in * (Y Donon et al, 2019). 

Equation 10 Convex hull filtering 

𝐼஺ ∗  𝑇஺ <  𝐻஺ & 𝐻௛ <  𝐼௛ ∗  𝑇௛  & 𝐻௜ <  𝐼௜ ∗  𝑇௜. 

For 𝐼஺, 𝐼௛, 𝐼௪ the image’s area, height and width and 𝐻஺, 𝐻௛, 𝐻௪ the hull’s area, height 

and width. And as threshold parameters  𝑇஺ = 0.02 and  𝑇௛  𝑇௜ = 0.9. 

Polygons obtained from the hulls were then compared together in height, width and 

surface as if: 

Equation 11 Convex hull comparison in area 

ቤ
𝐻஺

஺ − 𝐻஺
஻

𝐻஺
஺ + 𝐻஺

஻ቤ <  𝑇௔ᇱ . 

Keeping a maximum difference of  𝑇௖ = 0.08 and: 

Equation 12 Convex hull comparison in height 

𝐻௛
஻ ∗  𝑇௛ᇱ < 𝐻௛

஺ < 𝐻௛
஻ ∗  𝑇௛ᇱᇱ . 

Equation 13 Convex hull comparison in width 

𝐻௪
஻ ∗  𝑇௪ᇱ < 𝐻௪

஺ < 𝐻௪ 
஻ ∗  𝑇௪ᇱᇱ . 

With as threshold parameters  𝑇௛ᇱ  =  𝑇௪ᇱ =  0.92 and  𝑇௛ᇱᇱ  =  𝑇௪ᇱᇱ =  1.08. If pairs are 

matched, all hulls angles coordinates are paired together, generating 3 or more pairs of points 

by hull in accordance to the algorithm’s (Figure 3) and BIM’s process (Figure 14) step number 

5. 

Figure 32 Convex hull H application example on a set of 
points Q. (Mount, 2012) 
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Figure 33 Shows the image after convex hull Graham scan algorithm (Graham, 1972). 

On the left, the hulls are superposed on the original image, on the right the hulls are superposed 

on the image with borders only highlighted. 

Convex hull is extremely resilient to noise as it is enough for the algorithm that only 

the shape’s extremities remains relatively similar from an image to another. However, it lacks 

the precision offered by shape contouring. 

3.6.9 Coordinates matching 

Coordinates founds, by shape contouring (centroids coordinates) and convex hull 

application (angles coordinates) are matched together, creating a map of coordinates for the 

homography. 

The coordinates contain outliners (highlighted in red in Figure 34) those outliners might 

have to be filtered out, as they have heavy consequences on some uses that can be made out of 

the key points, such as the homography used to compare results in this thesis. This step of 

filtering is done by RANSAC as described in “Results evaluation” as it is not part of the 

algorithm proposed. 

Figure 33 represents the images introduced in Figure 13after Figure 14’s steps 1, 2, 3, 4, 5 and 6.b, Shape hulling using 
Graham scan algorithm. The right image presents shape contouring directly applied on the original image for comparison. 
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3.7 Results 

As introduced in chapter 2, BIM has been compared to 3 other popular techniques in 

order to assess its characteristics to other techniques. All processing has been done using an 

Intel Core i3-8100 at 3.60GHz, which maintains the experiments in an environment 

comparable to portable computing capabilities. Results have been calculated using the datasets 

presented in * (Y Donon et al, 2019) * (Yann Donon R. P., Brightness normalization for 

Blurred Image Matching, 2020) (Yann Donon R. P., Parameters selection for Blurred Image 

Matching, 2020) * (Rustam Paringer, 2020) and * (Pierre Donon). The first set was meant to 

evaluate BIM’s performance on regular pictures. The sample is constituted of about 225’308 

images extracted from social medias presenting various exposition and subjects. The noised 

dataset used to compare the techniques performance with noised images contains 7872 images 

of different sizes and kind, including cities aerial views, paintings, landscapes and buildings. 

The images have been noised artificially using OpenCV using as described in 3.7.5 Stitching 

success rate. A third set was used, this set particularity is that it didn’t contain reference images 

(images as they should be, if stitched perfectly). The third set was used to evaluate the technique 

with different parameters as well than the elements presented in 3.8.2 Stitching large amount 

of unordered images and 3.8.3 High confidence stitching. The sets present artificially induced 

Figure 34 represents points corelated between the pair of image introduced in 3.6.2 and at step 7 of Figure 14 Illustrated 
BIM process used for image stitching. Outliners are highlighted in red, those outliners perturb greatly the homography if not 
filtered out.. 
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brightness differentiation between images and contains three series of drone territory mapping, 

for a total of 444’059 images. 

The different techniques presented at the beginning of this chapter have been compared 

between each other, using image stitching as a reference, as described further in this chapter. 

The two following sub-chapters described the extra steps applied to the techniques (SURF, 

Harris, FREAK, BIM) to compared them to each other. The description of those steps in this 

thesis is made using BIM’s process as a reference. 

3.7.1 RANSAC 

Random Sample Consensus (RANSAC) is an iterative technique aimed to detect 

outliners in series of data. The algorithm approximtes results, with a probablility of success 

depending on the amount of iterations realized by the algorithm (Martin A. Fischler, 1980). 

Outliners are pairs of point significantly differing from other observations in their 

characteristics, in BIM, outliners are points falesely similar such as inverted angles or false 

positive in blob comparison (Vic Barnett, 1994). 

In this application of RANSAC algorithm, an amount of itterations is done where 

homographies are calculated from a randomly slected sample of 4 corresponding points. 

Distance between where those homography transforms are then computed and classified as 

inliners or outliners. The operation is repeated and the itaration which produced the largest 

number of inliners is then selected as the best homography estimation. (Dubrofsky, 2009)  
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In Figure 35, the corralated points are represented after RANSAC filtering. The 

remaining correlations (marked in white) are all usable by the homography process. 

3.7.2 Homography 

Any number of the same planar surface-s images are related by a homography. For 

homogeneous coordinates (N-dimensional coordinates represented by N+1 numbers) the 

homography matrix 𝐻 is found by the function: 

Equation 14 Homography matrix 

𝑠௜ ቈ
𝑥௜ᇱ

𝑦௜ᇱ

1
቉ ~ 𝐻 ቈ

𝑥௜

𝑦௜

1
቉. 

Homographical transformation consist of a mapping of point on a projective plan, 

concretely, it allows from the coordinates found in to build a projected imaged composed of a 

pair of images. (Kriegman, 2007) 

The algorithm used in our context uses a minimum of four point for the projection and 

the entirety of the points correlated by BIM, after RANSAC filtering. Four coordinates are 

necessary to represent the image’s coordinate in 𝑥, 𝑦 their inclination and orientation. 

Figure 35 represents points corelated between the pair of image introduced in 3.6.2, on Figure 34 and at step 8 of Figure 
14. Here, outliners present on Figure 34 have been filtered out, resulting in correlated coordinates ready for the homography 
process. 
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Figure 36 illustrates the result of image stitching after BIM process of feature image 

processing and feature recognition.   

Figure 36 illustrates the image represented as example in this chapter and on Figure 14 Illustrated BIM process used for 
image stitching after the complete process of feature selection and image stitching. 
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3.7.3 Results evaluation 

Results presented in this chapter have been compared using an implementation (Krarup, 

2018) of the Bhattacharyya distance histogram algorithm (Bhattacharyya, 1943), the 

implementation involve an image transformation to grayscale and a resizing to 16x16 pixels. 

Bhattacharyya distance 𝑑 is calculated between two images’ histograms 𝐻 and 𝐻′ with 𝐻௜ and 

𝐻′௜ the 𝑖th interval of 𝐻 and 𝐻′ dependant on all pixels as with the number of interval N = 162 

as: 

Equation 15 Bhattacharyya distance 

𝑑 =  ඩ1 − ෍ ඥ𝐻(𝐻௜)𝐻(𝐻′௜)

ே

௜ୀଵ

. 

The images taken to compare the performance are issued from different sets * (Y Donon 

et al, 2019) containing original images that have been cut according to random patterns and on 

which noise has been applied. This signifies that the sets contain both image fragment and final, 

“perfect” image results. In this work, it was decided based on estimation that only images with 

a Bhattacharyya difference of 2% or less would be considered similar as represented on Figure 

37. Images presenting a Bhattacharyya difference of 2% are presented on Figure 38, the left 

image is the result of a lack in precision in the homography matrix, the right image is the typical 

result of a stitching attempts with a homography matric corrupted by one or more pair of points 

as presented on Figure 35. Images are presented with the 16x16 array extrapolated from the 

transformed image used for the Bhattacharyya difference as described earlier in this chapter. 

Every square contains a pixel’s Bhattacharyya difference, the image’s Bhattacharyya 

difference is calculated from the average of each pixel difference. 
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Figure 38 Comparison between two unsuccessfully matched pictures, with a Bhattacharyya difference index of 19.6%
(left) and 36.8%. (right). Expected result appears on top and stitching attempts on the bottom. 

Figure 37 Comparison between two successfully matched pictures, with a 
Bhattacharyya difference index of 1.5%. Between the original mage (top) and stitched 
image (bottom), no difference appears to the human eye. 
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3.7.4 Processing time 

Image processing time, which represents the full process described in 3.6.1 Process 

presentation is in shorter than other implementations on tested values. The difference in 

processing time is mainly explained by the complexity of researched features, which depends 

on the technique and the number of features found, which greatly complexifies the operation 

of filtering and homography matrix calculation as highlighted in Figure 39. 

Figure 39 shows the feature calculation and image stitching processing time on 5 

different datasets, containing series of images of 0.25, 0.5, 1, 2 and 4 megapixels. Only 

successfully stitched images, as defined in 3.7.3 Results evaluation, were selected. On average, 

BIM is 71% faster than other techniques and 34% faster than Harris, its closest comparison in 

terms of speed. 

BIM speed is due to two factors, first being that after the image analysis, the feature 

identification process is more basic than in other techniques, borders are fewer than on other 

images due to the Gaussian blurring application and the image itself is thresholded, making the 

Figure 39 Computation time comparison between the different techniques. In this figure BIM stitching takes significantly 
less time than with other techniques, independently from image sizes. 
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borders simple to identify. However, the main factor of speed at this stage is the amount of 

points detected. As shown on Figure 40, BIM finds on average significantly less points than 

other techniques, namely 49 times less than the technique finding the highest number of 

correlations (FREAK) and 7 times than the second technique in this category (SURF). 

This feature of BIM is tightly attached to the technique’s concept of finding large areas 

of interest on images. It is possible to augment in specific cases the number of features detected 

as described further in 3.8.3 High confidence stitching. for some specific uses. However, for 

most uses, the small amount of points is a useful feature, it is an important element of the short 

processing time demonstrated by BIM as in Figure 39 but this features fain in importance for 

the problem of large unordered datasets as described further in 3.8.2 Stitching large amount of 

unordered images. For such datasets, the feature detection time on images grows linearly for 

each added image, however, the feature comparison time grows exponentially, and less features 

heavily impact on reducing calculation time in such situation. 

If BIM detects a small number of features compared to its counterparts, it is also the 

technique detecting features with the highest quality. A features quality is defined by the 
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Figure 40 Average points found by technique on 10k pixels images. This figure highlights how fewer points are selected 
by BIM compared to other techniques. 
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number of features usable for the homography matrix estimation out of the original pool of 

features detected.  

Figure 41 Shows the percentage of points kept by technique after the matching stage 

and after the RANSAC stage, a hundred percent being the total amount of features detected. 

The bars with a light background represent the number of features matched, every feature 

finding a pair from an image to the other. A higher percentage means that detected features are 

more significant, thus reducing the noise induced by other features. This noise is relevant as it 

can be the source of false positive in matching. BIM is the technique having the most points 

matched after FREAK and SURF. The bars with a dark background represent the proportion 

of images left after RANSAC filtering. A higher percentage means less false positive in 

features comparison (matching), which diminishes the chances of the RANSAC algorithm 

estimating a corrupted homography matrix. BIM and Harris present on average 6% of false 

positive as evaluated by the RANSAC algorithm, by far inferior to SURF (27%) and FREAK 

(30%). As such, BIM is the only technique able to use most detected points for the final 

homography with 66% against Harris 44%, and 34% for FREAK and SURF. 
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Figure 41 Percentage of points kept after the matching and filtering operations. This figure shows BIM’s higher 
ratio of points usable for the homography. A higher ration means a higher point’s quality. Bars with light background 
represents the proportion of features matched with a pair, Bars with dark backgrounds represents the proportion of features 
left after RANSAC filtering.  
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Such feature is extremely important for the techniques used for the stitching of large 

amount of images (3.8.2) not only because of the reduced amount of features but also as the 

algorithm used for stitching depends heavily on the probability that detected points are relevant.  

3.7.5 Stitching success rate 

BIM was compared to SURF, Harris and FREAK in terms of success rate on two sets 

of images, one containing image purposely noised to different degrees and one containing 

regular images. Success as defined in 3.7.3 were measured and compared on both sets, as 

illustrated on Figure 42. The figure shows on bars with light background success in percent on 

the regular dataset and on bars with a dark background success rate on the noised dataset. 

As shown on Figure 42 (light bars), BIM registers excellent success rate (93.8%), just 

under Harris (94.2%), followed by SURF (59%) and FREAK (49%) when it comes to stitch 

non-noised images. It seems important as this points to underline that this statement is no case 

an evaluation of the general quality of a technique but only a comparison to BIM in a restricted 

framework. It is however enough to assess BIM as usable and to some extent competitive 
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Figure 42 Techniques’ success rate comparison in percent, on both sets. In this figure BIM presents the second highest 
performance on the regular set and the highest on the blurred set. 
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among its pairs to deal with cases of feature detection and comparison on non-noised images. 

Thus, making the technique polyvalent. 

Figure 42 also shows (dark bars) success rate on purposely noised images set. As 

presented initially in 1 Aim, previous techniques application didn’t exceed 24% of success rate 

(SURF) and was followed by Harris (8%) and FREAK (4%), thus underlining a need for a 

robust technique. On the same dataset, BIM registers a success rate of 65%. 

The purposely noised dataset is of images on which different kind of alteration have 

been overlaid, noises have been selected in order to imitate commonly encountered noised on 

images. Some noise are the combinations of two different noise filters. Noise filters are: 

 Figure 48.a Gaussian blurring using a normalized box filter [17], with a 

kernel size of (x, x), x comprised between 5 and 200 incremented by steps of 

5. Typically found in out of focus captures or captures in movement. The 

noise’s probability density function 𝑝 of a Gaussian random variable 𝑔 is 

defined as follow (Ribeiro, 2004): 

Equation 16 Gaussian random variable's probability function 

𝑝ீ(𝑔) =  
1

𝜎√2𝜋
𝑒

(௚ିఓ)మ

ଶఙమ . 

 Figure 48.b Artificial perspective with a deformity from the point of origin 

up to 1/4 of the image’s size. This kind of noise is characteristic from images 

taken from different angles or moving objects. The function calculates the 

perspective transformation as for the matrix’s map 𝑚 (OpenCV, 2020): 

 

Equation 17 Perspective transformation matrix 

൥

𝑡௜𝑥௜ᇲ

𝑡௜𝑦௜ᇲ

𝑡௜

൩ = 𝑚 ቈ
𝑥௜

𝑦௜

1
቉ . 

Where  

Equation 18 Perspective transformation matrix parameters 

𝑑𝑖𝑠𝑡(𝑖) = (𝑥௜ᇲ,𝑦௜ᇲ), 𝑠𝑟𝑐 (𝑖) = (𝑥௜, 𝑦௜), 𝑖 = 0,1,2,3. 

 Figure 48.c A multiplicative noise (speckle noise) depending on picture’s 

height, width and depth, all with an intensity between 500 and 20’000. Such 
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noise exists in in active radars, Synthetic Aperture Radars (SAR, used to 

recreate three dimensional objects out of two dimensional images) (Jong-Sen 

Lee, 2009) and medical ultrasound (Forouzanfar, 2007). The noise density 𝑑 

is modelled as:  

Equation 19 Single-Look Multidimensional Speckle Noise Model Hermitian product of two SAR images  

𝑆௜𝑆௝
∗ = 𝜓𝑧௡𝑛௠𝑁௖ 𝑒𝑥𝑝(𝑗𝜙௫) +  𝜓൫|𝜌| − 𝑁௖௭೙

൯ 𝑒𝑥𝑝(𝑗𝜙௫)

+ 𝜓(𝑛ar + 𝑗𝑛ai) (7). 

 

Where 𝑆𝑖𝑆𝑗, for 𝑖, 𝑗=1,2,…,m, are the Hermitian product of two elements of 

the zero mean vector 𝐤 = [𝑆ଵ,  𝑆ଶ,   … ,  𝑆௠]T and 𝜓, 𝑧௡, 𝑁௖ , 𝜙௫  are parameters 

depending on the Same Hermitian product. ψ|ρ|exp(jϕx) is the term 

representing the useful signal component containing the given speckle noise 

(Carlos Lopez-Martinez, 2007). 

 Figure 48.d A filter presenting fixed defaults as presented in Figure 4, adding 

a white layer and lenses partial obstructions to represent the picture taken in 

a situation of extreme cloudiness with a damaged objective. The filter has 

been overlaid with an intensity varying from 2.5% to 97.5%, by steps of 

2.5%. Such noise it typical of captures issued from drones. It corresponds to 

a multiplied blend mode the formula 𝐵 is modelled for the backdrop layer 𝐶௕ 

and the source layer 𝐶௦ as: 

Equation 20 Images multiplied blend mode 

𝐵(𝐶௕ , 𝐶௦)  =  𝐶௕ ,∗  𝐶௦. 

 Figure 48.e Salt-and-pepper noise with a probability of the noise varying 

linearly from 0.01 to 0.4 α. This type of noise is often the result of 

electromagnetic interference (Sue, 1981). The model for an image 

transformation from its original 𝑓(𝑥, 𝑦) to its noised 𝑞(𝑥, 𝑦), considering 

MIN and MAX the limit values of a colour channel in the image, can be 

represented as (Boncelet, 2009):  

Equation 21 From original to Salt-and-pepper noised image transformation model 

PR[q = f] = 1 − α. 

Pr[q = MAX] = α/2. 

Pr[q = MIN] = α/2. 
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 Filtering and blurring as mentioned on Figure 48 is the combination of the 

filter noise presented above and Gaussian blurring. Both noises are applied 

with the same intensities and increment than presented above and following 

the same models. 

 Perspective and blurring as mentioned on Figure 48 is the combination of the 

artificial perspective noise presented above and Gaussian blurring. Both 

noises are applied with the same intensities and increment than presented 

above and following the same models. 

Figure 48.a to Figure 48.e, right frame are all images on which BIM could find 

significant enough features to ensure a matching with a pair of the same noise intensity. 

Figure 48 shows the performances of BIM when confronted to different kind of noises, 

showing the capacities of the technique in dealing with different kind of common noises as 

described above.  

BIM shows excellent performances when matching images affected by heavy Gaussian 

blur, with 93% of successful matches on the dataset, ahead of SURF (57%), FREAK (6%) and 

Harris (5%). This success comes without surprise as BIM functioning is based on the use of 

Gaussian blurring. Depreciated performances in this category is explained by the heavy impact 

blurring has on lines and corners as used by FREAK and Harris. 

On images mimicking the effect of clouds and partial lenses obstruction, BIM shows a 

success rate of 78% ahead of SURF (37%), FREAK (6%) and Harris (0%). Harris tend to catch 

details due to lenses obstruction as features, creating false positive. FREAK also suffers from 

that bias but is slightly less affected as the technique selects on average more points, making 

filtering out false positive more likely. It is however necessary to highlight that using the 

convex hull features matching technique only as described 3.6.8, BIM scored 28% of success 

rate, again, the implementation of blob contouring was partially motivated by this lack of 

performances. The shape contouring feature detection is therefore to be considered extremely 

performant to handle this kind of noise, improving successful stitching in this category of noise 

by 50%. 

Filtered and blurred images present remarkably similar results from the two noises 

previously mentioned, as it is the combination of both. BIM succeeds in 72% of cases, in front 

of SURF (36%), FREAK (7%) and Harris (0%). The explanations of Harris lack of 

performances in this precise case are the same than above, the results showed by SURF and 
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FREAK, ±1% from previous results can be attributed to a delta in the experimentation process. 

The 6% delta showed by BIM is significant enough to observe that the technique reaches its 

tolerance limit earlier than on single noises. 

Noised induced by perspective is treated with relatively good results by Harris, with a 

success rate of 31%, behind BIM’s 82%. It is however also relevant to note that using the 

convex hull features matching technique only as described in 3.6.8, BIM scored under 25% of 

success rate, again, the implementation of blob contouring was partially motivated by this lack 

of performances. The shape contouring feature detection is therefore to be considered 

extremely performant to handle this kind of noise, improving successful stitching in this 

category of noise by 57%. SURF shows performances lower than its average (5%) and FREAK 

(4%) 

Combined perspective and gaussian blurring noise considerable diminish the 

performances of Harris, bringing the technique’s success rate down to 7%, where the blurring 

operation gives better performances to SURF (19%), keeping FREAK at 4%. 

Salt and pepper noise showed itself challenging for all techniques, with BIM scoring 

37%, SURF 1%, Harris 2% and FREAK 0%. Highlighting a need for a technique able to 

compensate the lack of existing solutions. The lack of performance of existing techniques is 

easily explained by the fact Salt and pepper noise tends to hinder corners and edges and modify 

greatly colours distribution used by existing algorithms. 

Multiplicative noise also, for the same reasons than Salt and pepper noise, was showed 

as challenging for all techniques, with a success rate of 19% for BIM, 11% for SURF, 8% for 

Harris and 0% for FREAK.  

On average on noised dataset, as shown earlier, BIM’s success rate is of 65%, SURF 

24%, Harris 8% and FREAK 4%. 

The following pages (Figure 49 to Figure 55) presents the different categories of noise 

displayed on Figure 48 with increasing intensity. Showing a progressive success reduction with 

the noise augmentation. All graphs are presented with a sample of image taken at the extreme 

point where matching between the two images is still successful according to the experiment 

presented.  
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Figure 48 Success rate comparison between techniques on given noises. BIM shows superior performances in all 
categories of noise tested. With an average success rate of 65%, 41% higher than the second-best performing technique (SURF). 

Figure 48.a Comparison 
between a picture before (left) and after 
a blurring operation with a kernel size of 
200 by 200 (right). 

Figure 48.b Comparison 
between a picture before (left) and after 
a perspective noise application with an 
inclination of 200px (right). 

Figure 48.c Comparison 
between a picture before (left) and after 
a multiplicative and blurring noise 
operation with a kernel size of 150 by 150 
and an intensity of 7’500 (right). 

Figure 48.e Comparison 
between a picture before (left) and after 
a salt-and-pepper noise application with 
a probability of 0.4 (right).  

Figure 48.d Comparison 
between a picture before (left) and after 
a filter application with an intensity of 
37.5% (right). 
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Figure 49 Amount of image successfully stitched depending on blur intensity, with a sample of image at the maximum 
noise tolerance. 
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Figure 50 Amount of image successfully stitched depending on the filter intensity, with a sample of image at the maximum 
noise tolerance. 
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Figure 51 Amount of image successfully stitched depending on filter and blur intensity, with a sample of image at the 
maximum noise tolerance. 
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Figure 52 Amount of image successfully stitched depending on perspective intensity, with a sample of image at the 
maximum noise tolerance. 
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Figure 53 Amount of image successfully stitched depending on perspective and blur intensity, with a sample of image 
at the maximum noise tolerance. 
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Figure 54 Amount of image successfully stitched depending on salt and pepper intensity, with a sample of image at the 
maximum noise tolerance. 
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Figure 55 Amount of image successfully stitched depending on speckle and blur intensity, with a sample of image at the 
maximum noise tolerance. 
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3.8 Specific use cases of BIM 

3.8.1 Feature comparison through different noises 

Figure 56 shows an original image (Figure 56.1.a.) and its thresholded equivalent 

(Figure 56.1.b.) after the steps described in 3.6 BIM process. The following images (Figure 

56.2.a. to Figure 56 6.a.) present the same image than Figure 56.1.a. with different noises 

applied, as described in 3.7.5 Stitching success rate and their thresholded equivalent (Figure 

56.2.b. to Figure 56.6.b.): 

 Figure 56.2.a., Salt-and-pepper noise 

 Figure 56.3.a., white overlay and lenses partial obstruction 

 Figure 56.4.a., multiplicative and blurring noise 

 Figure 56.5.a., brightness correction (negative) 

Figure 56.6.a., brightness correction (positive) 

Figure 56 demonstrates that it is possible, using BIM, to compare images presenting 

different kind of noises. The figures highlighted in Figure 56.1.b. shows five features detected 

using BIM, All the following images (Figure 56.2.b. to Figure 56.6.b.) present one or more of 

those features, making the comparison possible.  

BIM is the only tested technique registering successes in similar comparison. Such 

comparison can be used to compare images and assess that they have been taken in similar 

landscape, even if the images have been taken in an interval including different environmental 

conditions. Such comparison also allows to reconstruct an image out of a series of noised 

fragment, given a technology comparing images areas quality and selecting the best quality, 

BIM can overlay the series of images thus ensuring the positioning of fragments in 

corresponding coordinates. 

  



Key point detection on noised images  
 

  60 

 

 

3.8.2 Stitching large amount of unordered images 

Stitching large amount of unordered images is a common problem (Brown M., 2005) 

(Au, 2013) the problem occurs when a dataset is given and images it contains do not have a 

labelling containing an information hinting the image succession order. Such dataset can also 

contain unrelated images complicating the comparison. As stated earlier in 3.7.4 Processing 

time, processing time of unordered dataset grows exponentially for each new image, as each 

image’s features has to be compared to the entirety of the dataset image’s features. 

Figure 56  Illustrate an original image (1.a) and the same image submitted to different noise (serie a). Along with their 
thresholded "print" (serie b). On all images on the serie b, at least one shape (highlighted) can be compared with the original image's 
threshold. 

1.a. 

 

1.b. 

 

2.a. 

 

3.a. 

 

4.a. 

 

5.a. 
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5.b. 
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6.b. 

 images from a set of 3386.b. 
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Figure 57 shows an application of BIM to reconstruct an aerial view out of 338 images. 

In this example, 222 images out of the set were selected for the homography, according to the 

technique described hereafter. 

BIM allowing to recognize features with an above average level of confidence (more 

than half of key points detected are on average used as described in 3.7.5 Stitching success 

rate), the issue is addressed by assuming that a higher amount of key points matched on a part 

of directly correlates with the chances of creating a successful homography between images. 

The key points pairs between images are presented as graphs, where the images are vertices, 

and the numbers of key points edges’ weight. Matching key points are detected using Prim’s 

algorithm (Thomas H. Cormen, 2009), a minimum spanning tree (Thomas H. Cormen, 2009) 

Figure 57 Aerial view reconstructed using 222 images from a set of 338. 
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is built in order to maximize the amount of matching key points between images and select an 

appropriate cascade order. If for some set of key points pairs the correct projective 

transformation cannot be established, then the corresponding image is excluded from 

consideration and the graph is reconstructed accordingly. Stitching is finally carried out in the 

tree’s traversal postorder (Thomas H. Cormen, 2009). 

3.8.3 High confidence stitching 

As stated above in 3.7.5 Stitching success rate, a higher number of point augment the 

confidence of creating a relevant homography for the image and reduce the subsequent 

uncertainty factor in RANSAC (Rahul Raguram, 2009). However, as stated in 3.7.4 Processing 

time, the amount of points found is a central characteristic of the technique. As such it was 

necessary to find a way to be able augment, if necessary, the amount of key point to be found 

on an image in order to augment the system’s confidence. Image are treated with different 

Gaussian blurring and thresholding values instead of the recommended ones only, creating 

different unrelated blobs instead of one set, then those different blobs are compared to each 

other. 

RANSAC confidence in finding an appropriate combination can be calculated by the 

following formula (Johan Nysjö, 2013): 

Equation 22 RANSAC confidence 

𝑁 =  
log(1 − 𝑝)

log(1 − (1 − 𝑒)ଶ)
. 

For 𝑒 the probability that the point is an outliner, 𝑠 the number of points in a sample, 𝑁 

the amount of sample and 𝑝 the probability of selecting a valid sample. Giving the probability 

𝑝 by: 

Equation 23 RANSAC outliner calculation 

1 − (1 − (1 − 𝑒)௦)ே = 𝑝. 

The amount of points found grows in pair with the number of pre-processing parameters 

tested simultaneously as shown on Figure 58, up to a certain point. Depending on the image, 

near 820 different iteration using different thresholding values, the image produced stops being 

informative (containing features BIM can match). The time taken by the process depend on the 

amount of iteration and present a logarithmic growth. 
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To select points, all combinations are first calculated using different pre-processing 

parameters, in an amount depending on the confidence necessary. Combination are picked from 

the recommended values as described in 3.6.5 Gaussian blurring and 3.6.6 Thresholding and 

then in its surrounding with an increasing α variance. Resulting in an array as presented on 

Figure 59, where all possibilities between parameters are showed with on the X axis, Gaussian 

blurring radius and on the Y axis thresholding value.  

Feature are then filtered according to their proximity, if two features from the same 

image can be compared between each other from a parameter set to another, the feature is 

Figure 59 Array of feature selection with different preprocessing parameters. The closer to green, the more combination 
are found. 

Figure 58 The average amount of points found relatively to the amount of image preprocessing with different 
characteristics.  
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deleted. This avoid cumulating similar points, which would only be a noise source as in 

increases de possibility of a false positive while creating areas with an accumulation of points 

extremely difficult for the RANSAC algorithm to dissociate. Once filtered, points are 

diminished by an average of 99.4% as presented on Figure 60, leaving only the points ideal for 

comparison.  

The last step is running the points found through the RANSAC algorithm presented 

earlier, resulting in a relevant array of points left for the homography matrix.   

Figure 60 Array of feature selection with different preprocessing parameters after filtering as described above. The 
closer to green, the more combination are found. 
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3.9 Conclusions on BIM 

3.9.1 Aims achieved 

BIM showed higher performances in stitching noised images than any other techniques, 

scoring almost three time more successes than the second best performing one, among other 

features. As such, the technique achieves the stated aim. 

3.9.2 Tasks solved 

BIM was originally developed to improve feature selection and comparison on noised 

image sets. The benchmark used was to select a technique able to function under different noise 

conditions and exceed by twice the performance of existing technique to a given dataset as 

described in 3.7.3 Results evaluation. The of 62% success rate have been matched and 

exceeded, reaching a success rate of 65%. Moreover, BIM when above expectations on non-

noised dataset performing,  with a success rate of 91.8%, only 0.4% worse than the most 

successful technique, making BIM second out of 4. Moreover, the technique’s processing time 

remains inferior to other techniques thanks to its feature selection process presenting a radically 

different approach from existing techniques. The reduced amount of highly qualitative features 

is as demonstrated also useful, with a use of it already demonstrated for the stitching of massive 

number of images. The Such features the allows to position BIM among main existing feature 

selection techniques while distinguishing the technique by its unique process among them. 

3.9.3 Statement 

The work presented in this chapter proves the relevance of the technique implemented 

through a series of comparative tests corresponding to a scientific techniqueology. The 

technique allows solving feature detection in noised images with higher performances and 

unique features when compared to existing techniques, proving BIM’s relevance when applied 

to noised images. 

3.9.4 Final word on BIM 

The reduced amount of feature selected, and the quality of those features is to be taken 

in account and might find specific uses. In general, the technique is expected to be used for 

aerial captures as it allows a flying drone to perform stitching, disregarding meteorological 

conditions and noise inherent to altitude. 

The technique uses already known approaches for data processing, making its 

implementation easy to perform in terms of engineering. In general, the feature selection 

process application as proposed is a complete success in terms of selection on images (BIM). 
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4 Key point detection on time series 

The aim of this thesis is key point detection on noised data, the first part of this thesis 

describes the algorithm proposed, following by an implementation proposition on noised 

images. From this chapter, the same algorithm, which is the innovation proposed in this thesis 

is applied to noised data series. This chapter introduces the problem, starting by describing 

existing techniques, followed by the solution developped in the framework of this thesis and a 

description of the results obtained. 

The objective presented in this chapter is similar to the one presented in the previous 

chapter, with as only significant difference the number of dimensions presented in the problem. 

The objective here is to find on two time series 𝑆(𝑥) and 𝑆’(𝑥’), points (𝑥) on 𝑆 and (𝑥’) on 𝑆’ 

corresponding to the same periodical feature. With a minimal dependence to the prior presence 

of noise on the series. As such the mapping (𝑥) →  (𝑥’) researched should satisfy consistency 

constraints and minimize the energy cost represented  𝐸(𝑆, 𝑥, 𝑆’, 𝑥’) as in its simplest form: 

Equation 24 time series point matching minimized energy cost 

𝐸 =  ‖𝑆(𝑥) −  𝑆’(𝑥’) ‖. 

4.1 CERN and SmartLINAC project 

The issue behind the development of SNiF emanated from the European Organization 

for Nuclear Research (CERN). CERN, based in Switzerland, is a research organization 

operating world’s larger particle physics laboratory. It is home to the Large Hadron Collider 

(LHC), which is currently the most powerful particle accelerator and largest machine on earth. 

The laboratory’s achievement includes the creation of the World Wide Web (WWW) in 1989, 

the first production of antimatter in 1995 and the discovery of the Higgs boson in 2012, 

completing the standard model and receiving the following year the Nobel Prize in physics. 

CERN tackles constant challenges in the field of IT, having one of the world’s most 

demanding computing environment, having to handle the one petabyte of data produced by the 

collisions observed through the LHC’s experiments (CERN, 2018). CERN’s datacentre 

currently stores several hundred of petabytes of data and expects the High-Luminosity Large 

Hadron Collider (HL-LHC) to multiply this amount and enter the Exabyte regime (Di Meglio, 

2017). The Worldwide LHC Computing Grid (WLCG) makes the process of data analysis 

possible, making available 770’000 computer cores on top of CERN’s 230’000 for the 

calculation of the data obtained by particle collisions. 



Key point detection on time series  
 

  67 

 

In this context, CERN openlab manages the development of ICT solution for the LHC 

community and wider scientific research through collaborations with leading companies and 

research institute. Samara National Research University signed in 2018 a collaboration 

agreement with CERN openlab, followed in 2019 by the birth of the SmartLINAC project. 

Linear Accelerators (LINACs) are a type of particle accelerators able to accelerate 

charged particles to high speeds. They are used today in many different researches, industrial 

and medical applications, from particle physics research, to cancer treatments, non-destructive 

material testing, nuclear waste treatment, security screening, or food sterilization. Typical 

medical or industrial LINACs are complex engineering systems and their operations, especially 

for in clinical environments, are highly impacted by down-time, costs of operations and lack 

of trained engineers. They are complex engineering systems composed of hundreds of 

thousands of parts, subject to continuous operations and are naturally subject to failures and 

breakdowns. In situations where systems failures have major safety or economic impact, it is 

of paramount importance to understand the system failure modes at the components level and 

design efficient maintenance plans allowing to maximize the up time, decrease operational 

costs and limit unexpected incidents. Very often the maintenance operations are reactive rather 

than proactive, which increases the operational costs, increase down-time and may force to 

keep expensive spare parts and trained engineers available at all times. 

the complexity of such systems is today severely limiting the availability and diffusion 

of LINACs for medical applications, technical expertise is not available, and down-time 

impacts directly the patients’ life expectancy. The need for simpler-to-maintain-and-operate 

medical LINACs was highly stressed during a workshop jointly organized by CERN, the 

International Cancer Expert Corps (ICEC) and STFC in October 2017 (David Pistenmaa, 

2017). 

The SmartLINAC project investigates an innovative technique to understand and model 

the failure of LINAC systems down to the individual component level, design predictive, easy-

to-implement maintenance plans based on Mean-Time-To-Failure and operating conditions’ 

information. Then to dynamically refine and “personalize” the maintenance plans by analysing 

information extracted from production systems using a machine-learning-based approaches. 

The project’s is being pursued in its first phase using CERN’s LINAC 4 operation data, 

in particular RF power source outputs, which are representative of the data obtained from other 
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LINAC components and seemed, according to domain experts, to be directly related to beam 

degradations in CERN’s accelerator complex.  

Linear accelerator 4 (LINAC 4) will be from 2021 the source of LHC’s proton beams. 

Designed to boost negative hydrogen ions (a hydrogen atom with an additional electron) to 

high energies (160 MeV) in order to prepare them for the Proton Synchrotron Booster, starting 

their journey through the accelerator complex, as represented on Figure 61.   

Figure 61 Represent CERN’s accelerators complex with, highlighted in red, LINAC 4’s position, at the beginning 
of the injection chain (CERN, 2019). 
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The Radio Frequency was LINAC4’s most common downtime cause during its 

reliability run, cumulating more than 36% and the reduction of down time periods have been 

established as a priority since 2018 (O. Rey Orozco, 2018). It is situated at the beginning of 

LINAC4’s functions in low energy a shown on Figure 63, on the third position. 

During the 13 weeks of reliability run, LINAC4 showed 90.6% of uptime, counting a 

total of 387 faults with a mean time to repair of 43 minutes. Main LINAC4 downtime root 

causes are shown on Figure 62, with power converters being second, partially due to a single 

18 hours downtime over two faults.  

Accelerator 
Controls

2.05%

Beam Losses
11.22%

CV
0.57%

Electrical 
Network

0.38%

Operation
1.91%

Other
0.76%

Power 
Converters

22.97%

Pre-Chopper
9.75%

Radio 
Frequency

36.98%

Source
13.42%

Figure 62 LINAC4 root causes system faults time proportions 
during the first two phases of reliability run (O. Rey Orozco, 2018). 

Figure 63 represents LINAC4’s basic architecture as represented in “PERFORMANCE EVALUATION OF LINAC4     
DURING THE RELIABILITY RUN” (O. Rey Orozco, 2018). The RF source is represented in the graphic’s third position. With 
illustration of the beam acceleration for each phase in Mega electron-volt (MeV).  



Key point detection on time series  
 

  70 

 

4.1.1 Explanation of the data 

LINAC 4 uses 2MHz RF sources to produce de plasma from which particles are 

extracted to the beam. The data consists of the source’s output power in Watts over time as 

represented on Figure 64 The figure represents data during a run of several months, parts 

highlighted in blue were marked by a domain expert as period when the beam quality presented 

decay. It coincides with periods of jitters in the data source. It is not excluded that those periods 

are the only periods of beam quality decay, other than that information, no form of labelling is 

obtainable from the data. In such conditions, the project’s priority was to establish a relevant 

data labelling technique relative to the periods of anomaly in the beam, which would further 

allow the selection of area of interest for the eventual anomaly prediction. 

4.1.2 Description of noises 

The data itself presents several sources of data driven noises, that had first to be 

understood and should be treated differently depending on their source. It was important to 

evaluate the informativeness of each noise before classification. This chapter details each 

sources of noise and their processing. The data analysed never presented breakdowns of the 

components but only changes of behaviour (beam quality decay), the investigation focuses 

therefore on any data distant from a regular behaviour that correlates with indicated periods of 

beam quality decay and close anterior period that could indicate symptoms. 

Figure 64 LINAC 4’s RF power output from the autumn run 2018. Portions highlighted in blue by a domain expert as 
periods where the beams quality presented decays (Yann Donon A., 2019). 
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In the data analysed, some measurement register 0W, leading to the drops visible on 

the bottom part of Figure 64 as well than highlighted in Figure 65.1.a. Those drops are 

consistent through the whole data set, with some rarer occurrence being registered at half of 

the power as in Figure 65.1.b. Following those characteristics, they can be considered as 

intermittent black noise as it registers systematically a null power no matter the signal state, 

however the signal is not mainly black (null), making it intermittent (National 

Telecommunications and Information Administration, 1949). Such noise comes from 

measurements errors and drops in the source. 

The reason of behaviours observed in Figure 65.1.a and Figure 65.1.b remains 

unexplained, their distribution is relatively even and doesn’t present any form of correlation 

with the designated periods of jitters. Those features led to a principle of punctual outliners 

elimination. As such, all the points presented in green on Figure 65 were considered of this 

1.b. 

 

2.c. 

 

1.a. 

Figure 65 Sample of data over a 1-day period with in 1.a. 0W captions, 1.b. punctual 
registration of power drops, 1.c. manual punctual power modification (Yann Donon A., 2019).
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category. Such point was dumped from the data series, connecting their previous and following 

points. 

Another source of observable noise in the analysis is presented on Figure 65.2.c and 

detailed on Figure 66, such noises results from human interactions with the data source, they 

can occur for different reasons, Figure 66.1. shows consecutive selection of decreasing power 

values for evaluation purposes on the beam. Figure 66.2 shows a student peak corresponding 

to a stress test and Figure 66.3 a regular change in power. Such event could not be related to 

the appearance of decay in beams quality however it has been on several occasions used to 

interrupt the jittering periods, resulting in jittering periods often ending with power source 

modifications. This can be assimilated to burst noise (Texas Instruments, 2007) sometimes 

combined with oscillator phase noise (Thomas H. Lee, 2000). 

Another source of noise is the general volatility of power in observed samples, as 

illustrated on Figure 67. This noise is directly issued by the source and the measurement 

instruments used. It is visible in the image that samples varies largely from a point to the next, 

making difficule to extrapolate informations from the data without preprocessing. This high 

variance, or white noise (Diebold, 2007), is a prime source of false positive and negative when 

data are computed using existing techniques. Moreover, the average variance doesn’t show any 

consistency whether in period or normal operation or jittering periods when selected on 

sufficiently small windows. Experiments on a 100 windows of 90 samples showed an average 

variace varying from a extreme to the other from simple to more than 7, effectively ranging 

from an average window variance of 42W to 251W. Moreover, as white noise, it is independent 

from normal operations to periods of jittering with a sample distribution even in all frequencies 

observed. 

1. 2. 3.  
ns 

Figure 66 Examples of power modifications resulting from human 
operations on the source (Yann Donon A., 2019).  
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Description of the jitters 

Jitters are the features that should be recognized and isulated as they correlate with 

periods of beam decay in the accelerators. 

Affectivey, jitters are consituted of successions of violents peaks and drops. Those 

peaks and drops however can not be considered as a reference alone as they freaquently 

occurres in the signal. It is their accumulation that characterises a period of jittering. 

The jittering periods can be easily observed on the signal over time. The following 

Figure 69 shows a one-week period of normal operation and the same time length of jittering.  

Figure 67 shows a data samples over a few hundred observations. It highlights the general 
variance observable in the data. 
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4.2 Existing techniques 

As for BIM, existing techniques have been tested on the data presented above. The issue 

systematically encountered wasn’t to detect the jittering period themselves. As introduced in 

Figure 2, all techniques succeeded to some extends, the issue encountered is the amount of 

false positive and false negative. Even in relatively small quantities, it represents a relevant 

issue for labelling and differentiation of the signal state. Moreover, existing techniques are all 

heavily impacted by noise. False positive are due to all source of noise described in 4.1.2 

Description of noises, as observed in Figure 2. 

All techniques are compared using the following references, categorisation are selected 

according to approximations established in 4.1.1 Explanation of the data : 

 True positive, point labelled as jittering and being effectively jittering  

 True negative, point labelled as a normal period of operation and being 

effectively so 

 False positive, point labelled as jittering when it doesn’t correspond to a jittering 

period 

 False negative, point labelled as a normal period of operation and corresponding 

to jittering periods 

The jittering being effectively continuous during jittering periods, labelling should be 

accordingly consistent for series of points 
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Figure 69 Power signal over normal operations (1.) and jittering period (2.) over a week of 
time (Yann Donon A., 2019).  
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4.2.1 Label-related clustering 

This approach is characterised by the use of machine learning in an attempt to solve the 

problem. Labelling was established based on the estimation offered by domain expert as 

developped in 4.1.1 Explanation of the data. Figure 71 shows a visualisation of the data with 

in red four areas used as jittering period reference. 

The technique is based on the search of features distinguishing the marked interval from 

the rest of the data. Features are observed in windows and “proximity areas” showing 

comparable features to the jittering areas windows are selected as displayed on , where 

proximity zones are highlighted in blue around the jittering periods  

This approach leaved, surrounding the jittering areas large areas potentially assimilated to 

jitters, creating false positive observations. Moreover, fragments are non-monolithic as shown 

on Figure 2, meaning they are prompt to false negative labelling. 

Label-related clustering technique sets if windows are clustered using Kernel Density 

Estimation (KDE) (Rosenblatt, 1956; Parzen, 1962). The Adjusted Rand Index (ARI) (Arabie, 

1985) is then calculated between the clustered set and the labelled set. ARI values are 

categorized according to a threshold 𝑡 with corresponding subsequences. This technique 

showed itself relevant ant the use of KDE and ARI for scalability showed the feasibility of 

realizing an adaptable system. Figure 72 illustrate the labelling offered by label-related 

clustering technique, compared to the signal (black) and the labelling estimation (red). 

Figure 70 Training data: RF power sources output, red color shows four jitter areas 
(Yann Donon A., 2019). 

 areas (Yann Donon A., 2019). 

Figure 71 Shows jittering areas in red as displayed in Figure 70 Training data: RF power sources output, red color shows 
four jitter areas . with in blue proximity areas showing feature sets comparable to the ones observed in jittering areas (Yann Donon 
A). 
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Results have been obtained with a threshold value set at 4.1, which showed the optimal 

performance in our experiments, resulting in the estimation displayed in Table 1. 

 True positive True negative False positive False negative Total 

Absolute amount 1046 787852 1756 217708 1008362 

Proportion (%) 0.1 78.18 0.2 21.6 100 

Table 1 represents the label-related clustering technique results on a set of 1008362 entries. 

It is observable from Figure 64 and Table 1 that the technique display a significant 

sensitivity to noise as jittering symptoms are detected over the whole sample in non-labelled 

locations. However, it is relevant to underline that a strong concentration of data labelled as 

jittering symptoms appears in the “proximity area” of the anomaly, highlighting symptoms of 

anomalies. The technique altogether lacks of the consistency through jittering periods as 

developped in 4.2 Existing techniques but shows relevant information over the data themselves. 

4.2.2 Sequence analysis using statistical features 

As introduced in the article “Extended anomaly detection and breakdown prediction in 

LINAC 4’s RF power source output” * (Yann Donon A., 2019): This technique consists in 

processing the sequence by sliding window and calculating the statistical features for the 

fragments of the sequence located in this window (Mayur Datar, 2012). 

The idea behind the approach is based on the assumption that there are some statistical 

characteristics allowing predicting the appearance of abnormal periods in time series 

(anomalies).  

As it is shown in 3.1, the transition between the normal and abnormal state does not 

occur instantly, meaning the sequence does not only contain normal and abnormal intervals, 

but also transition stages. Meaning the detection of such transition stages can be used predict 

anomalies. The exact amount of transition intervals being unknown, clustering algorithms must 

be used to determine their number and characteristics. 

Figure 72 Illustration of the labelling obtained from a sample of LINAC 4’s data with in black, the signal, in blue the 
labelling obtain from label-related clustering and in in red labelling estimation by domain expert 
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Thus, the problem is reduced to the division of the initial sequence into N clusters based 

on the values of statistical features. Processing of the sequence will be carried out using a 

sliding window of size L with a shift K. the Features are the statistical features of the sequences: 

mean, variance, asymmetry, kurtosis and percentile (B. S. Everitt, 1998). Hyperparameters of 

this approach are the size of the sliding window L, the value of the shift K, as well as the values 

of percentiles.  

In our test samples, the data consisted mainly in stable values. However, the interval 

between 220000 and 290000 is a period of jitters, which should be predicted. Standard 

deviation can be used to determine the areas containing deviation from the mean value, but 

because the value from which the deviation is to be estimated varies (intervals with stable 

values are characterized by different intensity values), the standard deviation must be 

normalized to the mean value (coefficient of variation (Salkind, 2010), the ratio of standard 

deviation to the mean value). Assessment of the value of the coefficient was conducted on a 

sample by a sliding window using the value of the radius of the window is 10 (L = 20), with a 

shift K=1 (for best accuracy). The maximum value is 4.47. The resulting distribution of the 

coefficient is shown in Figure 73, with an interval of 0.01. 

The main peak at point 0 is the number of values corresponding to the normal intervals 

without jitters. Figure 74 shows a more detailed distribution graph in the range [0.01 – 0.2] 

with two distinguishable intervals in the range [0 – 0.05] and [0.06 – 0.14] 

Figure 73 Coefficient of variation distribution graph. 
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After analysing the graph, it can be can assumed that the fragment of the graph in the 

range [0 – 0.05] corresponds to normal intervals – "cluster 0". Values (0.05 – 0.15) – cluster 1 

– possibly close to the normal intervals, but slightly different behaviour in its instability. 

Further examinations allow to distinguish 3 more clusters in range [0.2-0.5] and the [0.5-4.5] 

interval 16 more. 

All analysed clusters can show symptoms of jittering periods, the classification 

technique allowed distinguishing 20 distinct clusters confirming the presence of relevant 

features observable in the data and delimiting the different sequences, this technique is 

therefore important for the analysis of anomaly symptoms. The technique shows good 

performances in detecting anomalies period as highlighted in Figure 75. However, the major 

issue encountered using this technique is the clusters classification, leading in all sources of 

change in the signal containing potential symptoms of jittering leading to areas described as 

noise in 4.1.2 not being distinguished from anomalies, as illustrated in Figure 75. 

Characteristics mentioned above are confirmed by the numbers presented in Table 2. 

The sequence analysis using statistical features presents a higher false positive degree than 

label-related clustering approach but scores better in the other categories. 

 True positive True negative False positive False negative Total 

Figure 74 Fragment of coefficient of variation distribution graph [0.01-0.2]
containing two clusters (Yann Donon A.) 

Figure 75 Illustration of the labelling obtained from a sample of LINAC 4’s data with in black, the signal, in blue the 
labelling obtain from Sequence analysis using statistical features and in in red labelling estimation by domain expert. 
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Absolute amount 8321 775891 6807 208609 999628 
Proportion of the 

total (%) 
0.8 77.6 0.7 20.9 100 

Table 2 represents the sequence analysis using statistical features technique results on a set of 999628 entries. 

4.2.3 Kalman filtering 

Kalman filter performs well describing highly volatile series (Brown R. G., 1992), it 

takes in account features rarely used in other techniques (Shumway R.H., 2017), such as the 

variance of the initial state estimation and the model error variance (S., 2011). It provides 

information about the quality of the estimation by estimating an error probability. Kalman filter 

applies well to real-time digital processing (Lim, 2016) because of its recursive structure 

allowing execution without storing observations or past estimations (C., 2011), the technique 

uses smoothing as part as its functioning as shown on Figure 76, which represents in blue an 

original data sample and in red the corresponding sample after smoothing. 

The technique could distinguish two clusters of data according to the data average 

deviation, as shows Figure 77. Figure 77.1. contains a data sample from the signal after Kalman 

filtering. Figure 77.2. highlighting the first cluster in red, representing jitters symptomatic of 

signal quality decay. Figure 77.3. on the other hand highlights in red the second cluster, 

Figure 76 Data fragment before (blue) and after (red) Kalman filter (smoothing) 
application (Yann Donon A.). 

1. 

2. 

3. 

Figure 77 Shows a data sample (1.) followed by the first cluster containing supposed jittering 
periods highlighted in red (2.) and the second cluster supposed to contain anomalies provoked by an 
action from the users highlighted in red in 3. 
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corresponding to noise established by human manipulations as described in 4.1.2 Description 

of noises. 

The overall technique success is good, as the technique could highlight anomalies with 

precision as shown on Figure 78 while differentiating the different sources of anomalies. This 

hinted already, at the time the approach was tested, the possibility of using blurring technique 

for data analysis as used in BIM’s process, this observation leading to the use of a similar 

process in both BIM and, as described further in this chapter, SNiF. 

Figure 78 Illustration of the labelling obtained from a sample of LINAC 4’s data with in black, the signal, in blue the 
labelling obtain from Kalman filtering and in in red labelling estimation by domain expert. 
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Kalman filtering showed good performance and precision taking in account the differentiation 

of different labels. The technique isn’t sensitive to early symptoms as performed by Label-

related clustering, moreover, like other techniques, presented above, the absence of labelling 

continuity is an issue. Table 3 illustrates the metrics proposed by Kalman filtering without 

taking in account the clustering ability of the technique, thus generating false positive, not taken 

in account, the technique registered 1980 entries, far under the two techniques presented above. 

 True positive True negative False positive False negative Total 

Absolute amount 26273 774832 14776 192159 1008040 

Proportion of the 
total (%) 

2.6 76.8 1.5 19.1 100 

Table 3 represents the sequence analysis using statistical features technique results on a set of 1008040 entries. 

4.3 Series with Noise Featuring 

Series with Noise Featuring (SNiF) * (Yann Donon A. K., 2019), * (Yann Donon A. 

K., 2020) was developped after the initial success showed by BIM. Both technique’s initial 

challenge came from highly noised data which treatment was extremely challenging for 

existing techniques. The idea occurred after several unsuccessful tests that the same process 

applied to images could be adapted to times series, first test was immediately encouraging and 

led to the development of this alternative. 

As for BIM presented earlier, this technique was initially thought to process noised 

series. Already existing techniques showed themselves performant but do not match all the 

needs related to the problem stated in 4.1 CERN and SmartLINAC project.  

This chapter describes SNiF’s functioning and makes parallels with BIM steps. Figure 

79 echoes with Figure 14, which described BIM process, further comparisons, highlighting the 

unicity of both processes, will be made in the final chapter of the thesis. 

4.3.1 Process presentation 

Unlike shown previously, Figure 79 do not present similar illustrations through its 

process as the nature of the time series used for this research do not allow a visually 

representative description through one period of time. SNiF’s process shows the same 

numbering approach than the algorithm presented in Figure 3 and BIM’s implementation in 

Figure 14. 

SNiF’s input is real time data from captors, in our case, the LINAC 4’s RF power 

source. The output offered by the technique should be a labelling and real time alerts when 

entering a phase of jittering. 
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Figure 79 Illustrated SNiF process used for time series analysis 

Algorithm’s steps 

Data-related steps 

Experimentation related steps 
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4.3.2 Non-informative features filtering 

As showed in 4.1.2 Description of noises some information present in the data are 

characterised as non-informative. It is relative to the data source itself and a specific kind of 

noise that is not informative and doesn’t influence the signal as developped above therefore, it 

doesn’t correspond to a step of the algorithm presented in Figure 3, it corresponds to Figure 

79’s step 0.1. step 4 and is identified on Figure 14 as step 4.2.Non informative data are in our 

research categorised as such when is shown as outlier according to Grubbs’ test (Grubbs, 

Sample criteria for testing outlying observations, 1950). The nature of time series, when 

analysed in real time made Grubb’s test analysis extremely appropriate as the technique 

assumes 0 to 1 outliner by estimation according to : 

Equation 25 Grubbs’ test 

𝐺 =  
max
௜ୀଵ,ே

|𝑌௜ − 𝑌ത|

𝑠
. 

For all values of the series 𝑌 and 𝑌ത the series’ sample mean, and 𝑠 the standart deviation 

(Grubbs, Procedures for Detecting Outlying Observations in Samples, 1969).  

Filtering outliers allowed to perform further statistical analysis, starting with data 

normalization. Figure 80 illustrates the same data sample before and after filtering. This step 

in SNiF process is the only one not having a comparable BIM equivalent as this filtering need 

is dictated by the data source and not by the data type.  

Figure 80 Same fragments before filtering using Grubb’s 
test (left) and after (right) The fragment contains about 50’000 
entries, less than 1 ‰ of data were filtered out (Yann Donon A.). 
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4.3.3 Data Normalization 

Data normalization consists of bringing different data on the same scale. Just like 

histogram normalization described in 3.6.2, this step is used to bring different data samples on 

the same scale, independently from their value, moreover, it rationalises the data samples after 

the Non-informative features filtering described in 4.3.2. It corresponds to the algorithm’s 

(Figure 3a) and the technique’s process (Figure 79) phase 1. 

The technique used is z-score, which preserves the data range and introduce dispersion 

in the data, which is useful after the filtering realized above. Standard deviation score 𝑥 is 

calculated as for 𝜇 the sample mean, and 𝜎 the sample’s standard deviation, 𝑧 the distance 

between a sample value and the population mean (Kreyszig, 1979) 

Equation 26 Z-score 

𝑧 =  
𝑥 − 𝜇

𝜎
. 

4.3.4 Gaussian blurring 

Gaussian blurring is used to reduce the risk of false positive anomalies detection in the 

data by changing the signal, initially noised to tendencies. It is represented in the algorithm’s 

(Figure 3) and the technique’s process Figure 79.a) as phase 2. It is easily possible to asses 

visually, as represented on Figure 81, the figure illustrates the same fragment before (left) and 

Figure 81 Same fragment, before (left) and after (right) application of the Gaussian smoothing. This allows to clearly 
distinguish a tendency that is almost imperceptible before treatment (Yann Donon A.). 
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after (right) gaussian filtering. The tendency to rise and the subsequent fall observable on the 

left image is practically imperceptible on the image before gaussian filtering. 

In both proposed techniques, gaussian blurring is in the centre of the analysis, it allows 

through the adding a form of noise to understand a global picture instead of specificities. 

Gaussian blur can be adapted to 𝑛 dimensions, in the case of time series, the filter should blur 

one dimension only, as such for σ the Gaussian distribution’s standard deviation values are 

calculated as (Choe, 2014): 

Equation 27 Gaussian transformation on unidimensional data 

𝐺(𝑥) =
1

2𝜋𝜎ଶ
𝑒

ି
௫మ

ଶఙమ . 

After observations, a Gaussian kernel of length 100 and sigma 1 ∗ 10ିହ were selected 

for the filtering operation.  

4.3.5 Thresholding 

The blurring step significantly reduced the occurrence of false positive when analysing 

the data, however the general data volatility was a constant potential source of noise for the 

technique and the treatment of points of interest as described further in 4.4.1 Features 

comparison. It is the phase 3 on the algorithm’s (Figure 3) and the technique’s process (Figure 

79). Average variance was a significant indicator of jittering periods. Not all periods presenting 

a significant variance presents jittering symptoms, but all periods of jittering presented a 

variance higher than average.  

Thresholding allowed to highlight “proximity periods” as described above in 4.2.1 

Label-related clustering. Concretely, the reference used for thresholding is all data presenting 

a variance lower than average over window of the 500 latest entries (approximatively 10 

minutes on the data used). As for BIM this technique is used to define areas of interest into the 

data. 

4.3.6 Filtering of areas of interest 

Remining areas after Thresholding are selected as areas of interest if they retain their 

characteristics over a certain period. It is the algorithm’s (Figure 3) and the technique’s process 

(Figure 79) phase 4. The objective behind it is not to selects specifics events and their impact, 

which in the case of linear accelerator are common as explained earlier but to define changes 
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in tendencies, which can be indicators of an event. Detecting a tendency change early enough 

can as such approximate occurrence of significant events. 

As for BIM, areas of interest are selected when they can be considered significant. As 

explained in this chapter, short events can be considered insignificant were showed 

uninformative, as such only jittering covering a period of 1500 entries or more 

(approximatively 30 minutes on the data used) were selected. Filtering large areas was not 

necessary as by the definition of the thresholding tool used, no area can cover more than 50% 

of the data samples. 

Figure 82 illustrates the same data sample after blurring (Figure 82.1), Thresholding 

(Figure 82.2) and Filtering (Figure 82.3). The closer to red is an area, the higher is the average 

variance, meaning potential jittering. The area represented doesn’t show any corresponding 

signal decay, however shades of red are present over the whole signal presented in Figure 82.1. 

After the Thresholding, only short periods over the peaks presented in the data remains 

potential areas of jittering according to SNiF. After filtering as described in this chapter, no 

area remains identified by the technique, which eliminates all possible false positive and allows 

to calculate and compare features only over data presenting significant chances of being 

symptomatic. 

4.3.7 Features selection 

BIM featured two techniques for feature selection, both based on blobs. The nature of 

the data pushes to find other alternatives to delimitate features. It is represented in the 

algorithm’s (Figure 3) and the technique’s process (Figure 79) as phase 5. Jitters showed 
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Figure 82 shows a data sample containing no jittering perids but rich in noise with 1. A data sample after blurring, 
red shades indicate likelyhood. 2. A data sample after thresholding and 3. a data sample after filtering. After the thirs stage, 
no false positive alter remains. The image colorimetry have been altered from the original content in order to highlight 
color differences. 

1. 

2. 

3. 

Time 

Time 

Time 



Key point detection on time series  
 

  87 

 

different intensities, and length, the only constant observed so far is a change of points 

statistical distributions over periods. As the transitions observed from a point to another are 

continuous, a natural approach to estimate their distribution is Transition rate matrix (Syski, 

1992), but using such matrix makes comparison as described in 4.4.1 challenging as it is then 

necessary to change the continuous matrix to a discrete ensemble. Gerschgorin circle theorem 

can be used in order to delimit frontiers, however those delimitation would be a source of 

potential noise differences in matrices comparison as they are defined according to each matrix 

individually (Gerschgorin, 1931). 

Another alternative is the data transformation to a discrete ensemble prior to the matrix 

estimation. This alternative was retained for its simplicity of implementation and possibility to 

divide data using a uniform and statistically based approach. Data are clustered in 7 cluster of 

same vector size according to each value’s variance and their distribution is reported in creating 

a stochastic matrix (Asmussen, 2003). Stochastic matrix describes Markov chains over a 

continuous space, the sum of all individual lines and columns is 1. As such elements for the 

Stochastic matrix 𝑃 of size 𝑛 by  : 

Equation 28 Stochastic matrix representation 

𝑃 =  

𝑃ଵ,ଵ … 𝑃ଵ,௡

⋮ ⋱ ⋮
𝑃௡,ଵ … 𝑃௡௡

. 

Each element of 𝑃, 𝑝௜,௝ can be calculated as : 

Equation 29 Stochastic matrix element calculation 

𝑝௜,௝ =  Pr(𝑋௧ାଵ = 𝑥௝ | 𝑋௧ = 𝑥௜ ). 

As for every line and column: 

Equation 30 Stochastic matrix line and column summation 

෍ 𝑃௜,௝ = 1

ௌ

௝ୀଵ

 & ෍ 𝑃௜,௝ = 1

ௌ

௜ୀଵ

. 

The result of the operation is for each new data entry kept, after filtering, a Stochastic 

matrix is estimated in a window including the 1500 latest entries (approximatively 30 minutes 

on the data used), newly created matrix are then compared to each other as described below. 
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4.4 Results 

As developped in 4.2, no technique was completely unsuccessful in recognizing and 

consistently isolate areas corresponding to beam decay. Performances, each technique allowed 

a better understanding of the data and their characteristics. Given the characteristics already 

analysed, SNiF success must be evaluated on the continuity of labelling through jittering 

periods, the main feature of success evaluation should as such be a reduced amount of false 

positive and negative compared to other periods. In this use case, false positive or negative 

impact is especially important as the technique is meant to condition choices in components 

replacement having an important financial impact. 

The following chapters 4.4.1 Features comparison and 4.4.2 Features treatment, 

presents the steps taken to compare SNiF’s functioning with other techniques and are not part 

the algorithm proposed (Figure 3). The results obtained are then described in this chapter. 

4.4.1 Features comparison 

As this stage the original data are reduced to sets of stochastic matrices, the comparison 

of such matrices distribution is a well know problem (Tu Grul Dayar, 2003) (Torgersen, 1991). 

This phase is beyond the task of key point detection and is used to compare the results obtained 

in the framework of the experiments presented, it is therefore not represented on the algorithm 

(Figure 3) but corresponds to technique’s process (Figure 79) phase 6.1. The technique used 

differs again from BIM in terms of practice, due to the different nature of the data, however 

the concept of evaluating the general shape (or tendencies) of the sample is similar (Queen, 

1967).  

The stochastic matrices are extracted and clustered using k-means algorithm (Xiaoqian 

Wang, 2016 ). Least sum square is used extensively for such clustering for its simplicity 

(Løkse, 2014), it clusters 𝑛 observations (𝑥ଵ,𝑥ଶ, … , 𝑥௡) into 𝑘 clusters S  (𝑆ଵ,𝑆ଶ, … , 𝑆௡), where 

𝑘 is given, respecting the condition 𝑘 (≤  𝑛). The objective is to minimize the sum of squares 

by finding the following (Hans-Peter Kriegel, 2017), where 𝜇  is Si ’s mean of points: 

Equation 31 Minimal sum square calculation 

𝑎𝑟𝑔 min
ௌ

෍ ෍ || 𝑥 − 𝜇௜ 

௫ ∈ ௌ೔

௞

௜ୀଵ

||ଶ =  𝑎𝑟𝑔 min
ௌ

෍ |𝑆௜ | 

௞

௜ୀଵ

𝑉𝑎𝑟 𝑆௜. 

 



Key point detection on time series  
 

  89 

 

In the case of the data observed, 3 clusters 𝑘 are determined, one corresponds to regular 

operations, a second to periods of user interaction with the source and the third corresponds to 

periods of jittering. Figure 83 represents the clustering of a thousand windows reported on a 

million entries, processed with the Principal Component Analysis (PCA) procedure for 

visualisation (Jolliffe, 2002), in blue (Figure 83.0.), the periods corresponding to regular 

operations, in red (Figure 83.1.), the jittering periods and in green (Figure 83.2.), period 

corresponding to human interactions on the source. It can be noticed that even if human 

interactions provoke violent changes on the source, the data behaviour is close to regular 

operations period, those two being even difficult for the clustering technique to dissociate. 

However, periods of jittering have a very distinctive distribution, making it easy to separate 

them from the rest of the data and defining a strongly separated cluster. 

 

Figure 83 shows the clustering of a thousand windows stochastic matrices, with in blue regular operations, in green 
human interactions and in red periods of jittering. 
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In that context, it has been found that periods of jittering and their proximity areas as 

detailed 4.2.1 Label-related clustering corresponds to a change in the statistical distribution 

behaviour. This change operates with a growing variance intensity over a certain period before 

stabilizing as represented on Figure 84, where the behaviour mentioned earlier can be observed 

in green as the variance intensity augmentation slows down Figure 84.1. and almost stops 

Figure 84a.2. In other terms it signifies that periods of jittering presents early symptoms that 

are identical to the actual anomalies in SNiF’s perception. This point is of importance as it 

allows prediction of course, but most importantly, it allows to approximate the moment an 

event leading to jittering occurs. 

The distribution of this feature is used to delimit proximity areas as used further for 

demonstration purpose; it is however not a feature used in the process of data featuring.  

4.4.2 Features treatment 

As the clusters are known, the operations described earlier are used successively for 

every new entry. Again, this step is part of the comparison process for the different experiments 

and is therefore not represented on the algorithm (Figure 3) but only in the technique’s process 

(Figure 79) as phase 6.2.1 When an entry is classified into the cluster corresponding to jittering 

areas, alerts are thrown acknowledging the event with details of the event, the same way. 

As several filters and windows acts on the entry before the output phase, every flag 

raised at this point is considered positive. Just like BIM created an image out of an homography 

matrix, SNiF matches features together and raises alerts accordingly. 

4.4.3 Metrics 

Precise metrics are difficult to evaluate in SNiF’s case as, like for previous entries, the 

only available labelling in an expert approximation according to observable effect on the 

accelerator chains. But the problematics goes further as SNiF is successful in detecting 

P
ow

er
 (

W
) 

2. 

Figure 84 Shows a period of jittering, with the increase of variance intensity represented in green shades. Although the 
sample remains in a state compromising the beam quality, it is noticeable that the variance intensity amplification slows down (1) 
and almost stops (2). 
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anomalies a significant time before their apparition using their proximity areas. Those areas 

were not perceptible by the domain expert, it is therefore not possible to compare the 

technique’s success rate in proximity areas. This chapter therefore only compares BIM to other 

techniques on the areas of jittering detection, fragments detected by BIM as proximity areas 

are referred as “non evaluated” in Table 1. Moreover, all the false positive value found by SNIF 

were found at the border between the proximity area and the beginning of the jittering period 

as evaluated by the domain expert. This section of false positive is therefore not relevant as 

such and can be ignored as such. Compared to Table 1, Table 2 and Table 3, Table 1 is the only 

one not detecting false negative entries which is explainable when visualizing the 

corresponding data sample on Figure 86 and is developped below. SNiF labels between 210 

and 8 times more points in anomaly periods depending on the technique it is compared to, due 

to the selection technique the technique uses, using large consequent windows, which creates 

a continuous and therefore consistent labelling through time. 
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 True positive True negative False positive False negative Non evaluated Total 
Absolute 
amount 

249656 732859 18910 0 146086 1147511 

Proportion 
of the total 

(%) 
16.8 63.9 1.6 0 17.7 100 

Table 4 represents the sequence analysis using SNiF technique results on a set of 2639281 entries. The “non 
evaluated” column refers to sections labelled as proximity areas by SNiF, those section can’t be categorized differently as 
although they are representative, no form of labelling regarding them exists in the original dataset. 

As referred above, Figure 86 mirrors the sample of data shown in Table 1, with in green 

labelling obtain from BIM, all categories of labelling together, the image highlights how 

proximity areas are detected by SNiF, which as mentioned earlier is formally a source of false 

positive alters. The image also shows how no segment of data besides the jittering area and its 

proximity area is labelled as potential positive.  

The fragment represented in Figure 86, in particular the jittering period and its 

proximity areas as defined in 4.4.1 is detailed in Figure 87, showing the proximity area in light 

read and periods of jittering in dark read as analysed by SNiF, those highlighting the areas 

marked as “Non evaluated” in Table 1. 

Figure 86 Illustration of the labelling obtained from a sample of LINAC 4’s data with in black, the signal, in green the 
labelling obtain from SNiF and in in red labelling estimation by domain expert. 
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4.4.4 Classification results 

Overall, as seen on the previous chapter, results are difficult to evaluate in terms of 

quality from the moment a jittering period corresponding to a decay period in the beam quality 

has been isolated. It is possible to assess two points, which would be in the framework of the 

work developped: 

 All jittering period has been consistently labelled 

 No positive alert outside of jittering period or their proximity areas was found 

by the technique 

In those aspects. BIM is a complete success, out of the LINAC4 datasets, extracted 

from the latest run, all the areas of anomalies marked by domain experts were labelled as such 

by the technique. SNiF consistently labelled those areas, keeping no false negative and no false 

positive outside of proximity areas, with proximity areas extending between 2 and 10 days 

before the jittering period. 

  

Figure 87 shows the fragment labelled as jittering in Figure 79 and Figure 80, with in light red periods labelled as 
proximity areas using SNiF. 
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4.5 Conclusion SNiF 

4.5.1 Aims achieved 

SNiF is a successful implementation of the algorithm proposed in this thesis, the 

technique fits the need expressed for the labelling of linear accelerator’s captors time series, in 

particular for the recognition of jittering areas. It was the only tested technique succeeding to 

label the LINAC’s captors time series consequently and with a minimal amount of false 

classifications. Consequently, the technique will be implemented in production from 2020 in 

CERN’s accelerator complex. It doesn’t complete the SmartLINAC project mentioned earlier 

but SNiF is a viable solution to a first and essential step towards it. 

4.5.2 Tasks solved 

Altogether, SNiF showed, like BIM, good and unique performances in selecting large 

features in time series. The technique detects tendencies on long periods, it is therefore adapted 

to tasks as detecting change of behaviour over time over specific and punctual features, which 

would risk being ignored. The unavailability of large data samples allowing a relevant 

comparison between technique as was conducted with BIM explain why only a reduced amount 

of metrics were presented to establish BIM performances. The metrics presented are however 

enough to assess the technique viability and highlight its specific mode of functioning as: 

 The technique successfully identified all the areas of jittering identified by 

domain experts on LINAC4’s datasets. 

 The technique presented no false positive labelling outside of the jittering 

periods’ proximities areas. 

 The technique presented no false negative labelling through the data analysed.  

4.5.3 Statement 

SNiF, is an implementation of the algorithm presented in this thesis and was compared 

to existing solutions following a scientific methodology. The experiments performed shows 

the technique relevance for feature selection in noised data. The technique allows detecting 

features with a high consistency and confidence when compared to existing techniques, proving 

SNiF’s relevance when applied to noised images. 

4.5.4 Final word on SNiF 

The approach and the size of features selected makes the technique especially relevant 

for the selection of features in the shape of change of behaviour in the data. As such, the 
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technique is implemented in the engineering in SmartLINAC process, making a step towards 

the development of a functioning platform for maintenance planning in linear accelerators. 

Like BIM, SNiF uses existing and implemented techniques for data processing, making 

its implementation accessible, which relevant strength of the algorithm presented in this thesis 

and its subsequent techniques. 
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5 Conclusion 

5.1 Aims achieved 

The algorithm presented in this thesis is proposed as a solution for features detection 

on noised data. It reached the objectives advanced in the introduction in terms of metrics, 

moreover its approach showed specific characteristics do not present in other features detection 

technique, whether on images or time series. 

Out of the two implementations of the algorithm BIM technique showed: 

 To be the fastest tested technique by an average of 34% to the second fastest. 

 The features with the highest quality, unlike other tested techniques, the chances 

of BIM features being correct is higher average (66%). 

 To be second by 0.4% for image stitching on regular sets with a success rate of 

93.8%. 

 To register the most successes when tested on noised datasets, with a success 

rate of 65%. Almost three times superior then the second-best performing 

technique. 

The second algorithm’s, SNiF, implementation showed: 

 A unique feature selection approach, selecting consistent windows instead of 

points. 

 Few to no false negative labelling due its approach. 

 Few to no false positive labelling influenced by the ambient noise. 

 The ability to detect periods of change of the signal’s statistical repartition from 

early symptoms. 

The success enounced above confirms the algorithm’s legitimacy to figure among 

feature detection solutions, in particular on noised data and complete the aims enounced in this 

thesis.  

  



Conclusion  
 

  97 

 

5.2 Tasks solved 

The objectives enounced in 1 Aim were the development of a technique allowing key 

points identification on noised images, in order to demonstrate the algorithm described in 

Figure 3. By the standards developed in this thesis, the tasks enounced in order to demonstrate 

the algorithm’s performance were solved as:  

 The technique developped, BIM, showed a success rate of 65%, outclassing by 

more than twice the success rate registered by the most performant technique of 

the testing pool and reaching from far the objective of 46%. 

 It was showed to be a polyvalent technique, being showing itself more robust 

than other testing technique with all sources of noise tested. 

 The technique showed itself faster than other technique for stitching operations 

 BIM uses less points and of better quality than any other tested technique 

 Unlike common approach, the technique doesn’t estimate missing information 

(Zhang, 2015) due to noise but consider noises as part of the data, which could 

alter the data and mislead stitching techniques 

Those statements confirm the relevancy of the technique when dealing with noised data 

in the form of images. 

The second objective enounced in 1 Aim was the development of a technique allowing 

key points detection and comparison on noised time series using the same algorithm described 

in Figure 3, resulting in SNiF showing great performances and unique characteristics relative 

to the algorithm. Again, as described in the thesis, the technique developed was a success 

according to criteria defined as: 

 SNiF identified 100% of jitters in CERN’s LINAC4 datasets, also detecting 

proximity areas, allowing to foresee beam decay periods. 

 The technique showed excellent metrics, not detecting false positive alerts 

outside of the jittering periods or their proximity area and presenting a 

continuous labelling of noised series, thus not raising false negative alerts. 

 SNiF performs good in identifying significant periods presenting changing 

statistical characteristics. 

 The technique labelling is consistent over long periods of time, thus producing 

very few false negative alerts. 
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The goal enounced in this thesis was the proof of concept for the algorithm enounced 

in Figure 3 the development of techniques (BIM and SNiF) was enounced as a demonstration 

of the algorithm’s functioning. It is therefore necessary to compare the algorithm enounced in 

the figure with those used for BIM and SNiF to assess their conformity. Figure 88 compares 

both BIM and SNiF process, in the figure, red represent steps that depends on the data type, 

blue steps corresponding to the algorithm presented in this thesis and white steps depending 

only on the comparison approach used to assess the techniques in this article. For both 

techniques it is observable that the red steps depend on the data category that was used for 

comparison. For BIM, those steps correspond to minor corrections in images preparing images 

for their processing. For SNiF, it includes non-informative features filtering, which in the case 

of the data obtained from LINAC4 is a very specific category of noise (measurement 

inconsistency). Those steps can be considered therefore as a preparation for a treatment using 

the algorithm proposed in the thesis. Sections in white are irrelevant here as they serve to 

compare implementations and are not part of the processes themselves for other reasons. 

Finally, blue parts, representing steps proposed in the thesis are predominant, both techniques 

use all steps proposed in the same order, with the same input parameters needs, showing their 

conformity to the algorithm proposed. The similarities between the two techniques and extra 

step being only needed as a way to prepare data for the central algorithm, shows that both BIM 

and SNiF are indeed based on the algorithm proposed in this thesis and that this algorithm is 

in the core of both techniques’ functioning.  

Figure 88’s blue steps, highlight the contributions proposed in this thesis as they are the 

core of the algorithm proposed.  

  



Conclusion  
 

  99 

 

 

Figure 88 BIM and SNiF process comparison with similar steps (blue) steps depending on the data source (red) and step 
relative to the experimentation (white). 

Algorithm’s steps 

Data-related steps 

Experimentation related steps 
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5.2.1 Outside’s scope evolutions 

From the conclusions drawn in the previous chapter, a relevant next step would be to 

keep comparing the technique on noised series with more dimensions such as hyperspectral 

analysis in order to obtain one more dimension than images, however such research will not be 

conducted in the framework of this thesis, if a relevant and expressed need of such technique 

appears then the development will be considered.  

Another relevant point to explore is parameter selection using machine learning 

approaches. In this thesis, parameters are given according to research done on the techniques 

which corresponds to the approach used by the other techniques used to assess both techniques. 

However, better results could potentially be obtained by selecting parameters using neural 

network to select parameters relatively to every sample of data, thus making both techniques 

“of fit”. Moreover, this step will be a necessity to conduct the SmartLINAC project and will 

therefore be introduced in the project’s next steps as SNiF will have to adapt, without 

supervision to many different captors for different linear accelerators from both scientific and 

medical sources. This step was excluded from the framework of this thesis as although it 

highlights again the similarity of both techniques around the main algorithm, it is not relevant 

as part of the algorithm described in the thesis. 

The challenge mentioned above could be tackled for images using a generated dataset 

including numerous images of different kind and presenting a variety of noises with different 

intensities. This dataset would then be treated by BIM using a variety of different parameters 

and calculating the precision of result obtained for every set of parameters before feeding to a 

neural network sources images and the most successful sets of parameters. 

Time series parameter selection could be achieved by running SNiF on new datasets on 

an initialization run while labelling incoming data based on default parameters, feeding to a 

neural network the labelled data in order to compare them with similar labels from already 

treated datasets. 

Both techniques have been approached, assessing their feasibility, but the research 

being in a preliminary state, it is yet too early to draw conclusions over its functioning, 

moreover, as described above it falls outside of this thesis’s scope. 

5.3 Statement 

The work presented in this thesis is novel and scientifically relevant; the algorithm 

proposed performed the series of tasks enounced to assess its performances successfully. The 
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algorithm’s implementations are used by the industry, in particular at CERN. they allowed to 

solve problems so far unanswered. The algorithm allows solving feature detection in noised 

with higher performances on the tested scope than existing techniques. This thesis also 

confirms the experiments performed reflects a scientific methodology proving the algorithm’s 

legitimacy to offer a novel way to select features in data, in particular noised, through its unique 

characteristics and performances.  

5.4 Final word 

This thesis proposes a new approach that has not for pretention to be a breakdown in 

terms of science but offers a new perspective in terms of problem solving, in particular in the 

case of noised data. If none of the techniques shows new elements, they use existing elements 

in a way that had not been approached before and it results in a working solution for noised 

data, with unique metrics when compared to other technique. 

The centre of the work presented in this paper is an algorithm which, although not 

containing elements of novelty in its workflow, is a novelty in terms of both approach and 

resulting algorithm. Its core simplicity makes its implementation very approachable which 

apart from facilitating its use of a relevant feature when the question of solutions 

implementation quality grows rising in science (Kriegel, 2017).  

The algorithm presented kept through both techniques its integrity in terms of simplicity 

and source of inspiration. As a final word, as simple as it may sound, the techniques derived 

from the algorithm functions and are successfully used to solve issues that so far would not 

find answers thus making the work presented in this thesis a scientific and engineering success. 
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