

Программа развития стратегической академической единицы Самарского университета «Газотурбинное двигателестроение»

Программа развития САЕ «Газотурбинное двигателестроение»

Цель САЕ: Создание научно-образовательного центра компетенций в сфере двигателестроения и достижение передовых позиций в мире в таких областях, как: разработка обладающих принципиальной новизной параметрических междисциплинарных моделей, методов и технологий проектирования и производства малоразмерных газотурбинных двигателей (МГТД), сокращающих сроки их создания по сравнению с существующими в мире в 2...3 раза; разработка высокоэффективных методов и средств борьбы с вибрацией и шумом; подготовка элитных специалистов для двигателестроительных предприятий.

Задачи САЕ:

-разработка новой методологии создания МГТД, базирующейся на использовании параметрических виртуальных двигателей-прототипов, многокритериальной и многоуровневой оптимизации и аддитивных технологий производства;

-разработка методологии и эффективных средств комплексной борьбы с вибрацией и шумом в технических системах;

-разработка методики и методического обеспечения для интеграции научноисследовательской и проектной деятельности магистрантов и студентов, обучающихся по различным направлениям подготовки, с целью выполнения проектирования виртуального ГТД;

-создание R&D-центра, занимающегося проектированием и производством МГТД с привлечением к работе магистрантов и аспирантов;

-организация R&D-центра, занимающегося исследованиями динамики и акустики машин, подготовкой магистров и аспирантов, а также разработкой, серийным производством и реализацией, в том числе за рубежом, эффективных средств борьбы с вибрацией и шумом в технике.

Позиции в отраслевых (предметных рейтингах по итогам формирования и развития CAE:

К 2020г. CAE превратится эффективный научно-образовательный производственный центр компетенций, решающий в кооперации с отечественными и партнерами актуальные зарубежной зарубежными ДЛЯ российской И экономик образовательные И научно-технологические задачи В сфере газотурбинного двигателестроения, что позволит улучшить позиция в отраслевом (предметном) рейтинге QS Engineering and Technology: Mechanical, Aeronautical and Manufacturing Самарского университета.

План развития САЕ «Газотурбинное двигателестроение»:

- 1 Модернизация и обновление перечня реализуемых образовательных программ
- 1.1 Разработка новых образовательных технологий (повышение уровня научнометодического задела и проведение модернизации лабораторной базы учебного процесса):
- Поэтапное создание базы 3D-моделей ГТД и базы виртуальных стендов: создание структуры базы и двух 3D-моделей макетов ГТД; разработка виртуального стенда, создание двух 3D-моделей макетов ГТД.
- Разработка новой образовательной технологии и методического обеспечения, позволяющих изучать и проектировать усовершенствованные конструкции двигателей по их натурным макетам, электронным аналогам, осуществлять сборку и разборку виртуальных двигателей.
- Разработка инновационных исследовательских лабораторных работ, сочетающих использование современного экспериментального цифрового оборудования с расчетными моделями высокого уровня:

Разработка инновационной исследовательской лабораторной работы по изучению колебаний моделей дисков;

Модернизация лабораторной работы «КуАИ-ВВ» на основе использования современного экспериментального цифрового оборудования;

Разработка проекта исследовательского лабораторного стенда: «Инновационная технология снижения эмиссии вредных веществ в ГТУ сжиганием топлива в микровихревых матрицах»;

Разработка методического обеспечения для выполнения физических и численных экспериментов на базе лабораторного стенда «Инновационная технология снижения эмиссии вредных веществ в ГТУ сжиганием топлива в микровихревых матрицах»;

Разработка инновационной лабораторной работы, сочетающей расчетное и экспериментальное изучение рабочего процесса малоразмерного центробежного компрессора;

Разработка концепции многоуровневой автоматизированной системы испытаний ДВС для исследования его рабочих процессов;

Разработка инновационной лабораторной работы по исследованию теплопроводности неметаллов на основе численного и физического экспериментов;

Разработка лабораторного практикума по исследованию рабочих процессов тепловых двигателей в рамках дисциплины "Термодинамика".

 Разработка технологии и методического обеспечения для реализации интеграции курсовых и дипломных проектов, магистерских диссертаций, выполняемых в рамках различных образовательных программ, в единый сквозной проект по созданию виртуального ГТД:

Разработка концепции интегрированного сквозного проекта по созданию виртуального ГТД;

Разработка структуры единого сквозного проекта по созданию виртуального ГТД;

Разработка образовательной технологии и методического обеспечения для проведения сквозного междисциплинарного курсового проектирования по рабочим процессам ГТД;

Разработка методических рекомендаций и указаний к выполнению в курсовом проектировании имитационного моделирования производственных участков механической обработки виртуального предприятия по производству ГТД в среде Tecnomatix Plant Simulation;

Разработка методических рекомендаций и указаний к выполнению в курсовом проектировании моделирования технологической подготовки производства деталей ГТД виртуального предприятия в среде Teamcenter.

 Разработка методического обеспечения и технологии создания в сквозном проекте виртуальных систем автоматического управления (далее САУ) ГТД:

Разработка технологии создания виртуальной полноразмерной динамической модели ГТД;

Разработка технологии идентификации ГТД как объекта регулирования (OP) в диапазоне изменения возмущающих воздействий.

 Разработка научно-методического задела и комплекса лабораторных работ по исследованию процессов резания и формирования поверхностного слоя на основе теории механики сплошных сред и имитационного моделирования технологических процессов механической обработки в конечно-элементных системах:

Апробация и доработка созданных и разработка новых лабораторных работ по исследованию функциональных параметров и физики процессов резания;

Разработка и апробация лабораторных работ по исследованию влияния условий обработки на формирование поверхностного слоя.

 Разработка научно-методического задела и комплекса лабораторных работ по аддитивным технологиям с применением методов планирования эксперимента, имитационного моделирования и конечно-элементного анализа: Отработка режимов порошкового синтеза отечественных материалов при проектировании и технологической подготовке производства;

 Разработка методического обеспечения и поэтапное создание базы виртуальных автоматизированных технологических комплексов для отладки техпроцессов:

Разработка методического обеспечения по 3D кинематическому моделированию многоосевого оборудования с ЧПУ для виртуальной отладки управляющих программ и постпроцессоров;

Создание и верификация 3D моделей трех обрабатывающих центров для виртуальной отладки управляющих программ. Разработка основ виртуального класса оборудования.

– Разработка научно-методического задела и комплекса лабораторных работ по натурной и виртуальной сборке ГТД и балансировке роторов:

Создание модели для определения толщины регулировочного кольца осевых зазоров при использовании базы актуальной геометрии размеров деталей в процессе виртуальной сборки компрессора ГТД;

Создание модели формирования радиальных зазоров в ступенях компрессора при использовании базы актуальной геометрии размеров деталей в процессе виртуальной сборки компрессора ГТД.

 Создание научно-методического задела, образовательной технологии и методического обеспечения по автоматике авиационных двигателей, автоматизации технологических процессов и производств, мехатронике и робототехнике:

Создание научно-методического задела по синтезу нечёткого регулятора при помощи пакета прикладных программ системы Matlab;

Разработка образовательной технологии синтеза нечёткого регулятора при помощи пакета прикладных программ системы Matlab.

 Разработка методического обеспечения и технологии создания мультидисциплинарных параметрических моделей технологических процессов для оптимизации технологической подготовки производства:

Разработка методического задела по определению рациональной области режимов механической обработки деталей из сплавов и легированных сталей авиационного назначения на оборудовании с ЧПУ;

Разработка методического задела по автоматизированному выполнению корректирующих операций на основе 3D технологических моделей деталей по результатам измерений обработанных деталей.

Совершенствование научно-методического обеспечения численных и экспериментальных исследований рабочего процесса газотурбинных двигателей:

Разработка образовательной технологии эффективного изучения рабочих процессов ГТД с применением методов дистанционного обучения;

Разработка методического обеспечения для проведения интерактивных практических занятий по изучению теории рабочего процесса ГТД;

Разработка методического обеспечения для проведения интерактивных практических занятий по изучению теории турбомашин ГТД;

Разработка инновационных лабораторных работ по исследованию влияния внешних условий и режима работы малоразмерного ГТД на характеристики МГТД ДГ-4М с использованием современного математического обеспечения;

Разработка инновационных учебно-исследовательских лабораторных работ на основе использования виртуальных моделей малоразмерных турбин при изучении особенностей их рабочего процесса с применением CFD-пакетов;

Создание и внедрение в учебный процесс проекта нижнего уровня двухуровневой автоматизированной системы учебно-исследовательских испытаний ТРДД АИ-25;

Создание и внедрение в учебный процесс проекта верхнего уровня автоматизированной системы учебно-исследовательских испытаний ТРДД АИ-25, а также методического и технического обеспечения.

– Развитие материальной базы, поэтапное приобретение и изготовление оборудования для модернизации лабораторной базы:

Изготовление экспериментального оборудования для лабораторных работ по колебаниям модельных лопаток и дисков двигателей;

Составление перечня потребного оборудования для модернизации лаборатории динамики и прочности двигателей и моторного класса (ЦИАД);

Создание лабораторной установки для получения характеристик центробежного компрессора

- Разработка и реализация образовательных программ, включая программы двойных дипломов, с международной аккредитацией, англоязычные, совместно с высокотехнологичными предприятиями и ведущими зарубежными вузами.
- Разработка образовательных программ совместно с высоко-технологичными предприятиями, первый набор обучающихся:

1 этап совместно с ОАО «Металлист-Самара» - «Конструкция и технология производства ГТД и ЭУ»; «Энергосберегающие технологии в производстве ГТД и ЭУ»

2 этап – 4 программы

3 этап — 3 программы

4 этап – 4 программы

5 этап – 3 программы

– Разработка образовательных программ совместно с ведущими зарубежными вузами, первый набор обучающихся:

1 этап совместно с Нанкинским университетом астронавтики и аэронавтики (Китай) – «Конструкция и проектирование ГТД и ЭУ», «Основы проектирования и конструирования ГТД и ЭУ»; совместно с университетом МакГилл(Канада) – «Проектирование энергетических установок летательных аппаратов»; совместно с университетом Карлтон (Канада) – «Теория и расчет двигателей летательных аппаратов»

2 этап — 2 программы

3 этап – 2 программы

4 этап — 2 программы

5 этап – 2 программы

- Разработка 6 методических указаний для лабораторных работ и курсовых проектов по конструкции, динамике и прочности двигателей для англоязычной образовательной программы по направлению 24.03.05 (160700.62) Двигатели летательных аппаратов (профиль подготовки «Конструкция и проектирование ГТД и ЭУ»), разработанный совместно с Нанкинским университетом астронавтики и аэронавтики (Китай).
- Перевод на английский язык 6 методических указаний для лабораторных работ и курсовых проектов для англоязычной образовательной программы по направлению 24.03.05 (160700.62) Двигатели летательных аппаратов (профиль подготовки «Конструкция и проектирование ГТД и ЭУ»), разработанный совместно с Нанкинским университетом астронавтики и аэронавтики (Китай).
- Разработка 6 методических пособий для лабораторных работ и курсовых проектов по конструкции и проектированию основных узлов и систем двигателей для англоязычной образовательной программы по направлению 24.04.05 (160700.68) Двигатели летательных аппаратов (магистерская программа «Основы проектирования и конструирования ГТД и ЭУ»), разработанный совместно с Нанкинским университетом астронавтики и аэронавтики (Китай).
- Перевод на английский язык 6 методических пособий для лабораторных работ и курсовых проектов для англоязычной образовательной программы по направлению 24.04.05
 (160700.68) Двигатели летательных аппаратов (магистерская программа «Основы

проектирования и конструирования ГТД и ЭУ»), разработанный совместно с Нанкинским университетом астронавтики и аэронавтики (Китай).

- Разработка методических пособий для лабораторных работ по CAD/CAE-моделированию и сопряженным расчетам процессов в конструкции двигателей для англоязычной образовательной программы по направлению 24.04.05 (160700.68) Двигатели летательных аппаратов (магистерская программа «Проектирование энергетических установок летательных аппаратов»), созданной совместно с университетом McGill (г. Монреаль, Канада)).
- Перевод на английский язык методических пособий для лабораторных работ по CAD/CAE-моделированию и сопряженным расчетам процессов в конструкции двигателей для англоязычной образовательной программы по направлению 24.04.05 (160700.68) Двигатели летательных аппаратов (магистерская программа «Проектирование энергетических установок летательных аппаратов»), созданной совместно с университетом McGill (г. Монреаль, Канада))
 - Разработка модульных дистанционных курсов на платформе Moodle:

1 этап – 6 курсов

2 этап − 1 курс

Разработка и реализация CDIO ориентированной программы

Разработка и реализация интегрированной программы магистратуры-аспирантуры

 Разработка и реализация программы аспирантуры совместно с ведущими зарубежными вузами

2 Развитие научно-исследовательской и научно-технической деятельности

Разработка новой методологии создания малоразмерных газотурбинных двигателей (далее МГТД):

Выбор параметров, разработка техзадания на проектирование МГТД (базовый МГТД) как основы для создания параметрического виртуального двигателя-прототипа;

Разработка и согласование ТЗ на базовый МГТД;

Разработка конструкции базового МГТД;

Предварительные исследования зависимости основных параметров от тяги МГТД и разработка рекомендаций по выбору его схемы;

Выбор и обоснование рациональных параметров рабочего процесса базового МГТД;

Проектирование турбины базового МГТД;

Проектирование компрессора базового МГТД;

Проектирование сопла базового МГТД;

Проектирование входного устройства базового МГТД;

Выбор структуры и параметров систем управления и топливопитания МГТД;

Разработка предварительных проектных решений по системам управления и топливопитания МГТД;

Определение требований к камере сгорания и выбор её схемы на основе термогазодинамического расчёта МГТД и согласования с работой компрессора и турбины;

Проектировочный расчёт камеры сгорания МГТД и определение её облика;

Предварительные исследования рабочего процесса на модели каталитической камеры сгорания базового МГТД;

Разработка конструкции каталитической камеры сгорания базового МГТД;

Расчет системы топливоподачи для МГТД при переводе его на криогенное топливо (СПГ, водород).

 Проектирование и технологическая проработка модернизации и производства стендов для верификации математических моделей процессов в базовом МГД и его узлах:

Формирование ТЗ на проектирование стендов для исследования рабочих процессов компрессора, камеры сгорания и турбины;

Разработка эскизных проектов стендов для экспериментального исследования рабочих процессов компрессора, камеры сгорания и турбины;

Разработка предварительного проекта стенда для испытаний малоразмерных ГТД;

Разработка рабочего проекта стенда для испытаний малоразмерных ГТД;

Разработка предварительного проекта автоматизированной системы подачи кондиционированного воздуха для термобарокамеры;

Рабочий проект автоматизированной системы подачи кондиционированного воздуха для термобарокамеры;

Определение требований к стендам моделей камеры сгорания для верификации математических моделей процессов в КС МГТД;

Определение требований к стендам поузловой доводки и испытаний МГТД для верификации математических моделей процессов в КС МГТД;

Разработка проекта доработки стендов моделей КС для верификации математических моделей процессов в КС МГТД;

Формирование технических требований к стенду разгонных испытаний элементов ротора.

– Разработка требований к параметрическим моделям конструкций деталей и процессов в элементах параметрического виртуального двигателя-прототипа (ПВДП):

Аналитический обзор по параметризации и интеграции математических процессов, конструкций и происходящих в них процессов;

Разработка требований к параметрическим моделям рабочих процессов в компрессоре и турбине ПВДП;

Согласование требований к параметрическим моделям рабочих процессов в компрессоре и турбине с требованиями к другим моделям ПВДП;

Разработка требований к параметрическим моделям конструкции и процессов КС ПВДП;

Согласование требований к параметрическим моделям конструкции и процессов КС с требованиями к другим моделям ПВДП;

Разработка требований к параметрическим моделям конструкций узлов и деталей ПВДП;

Согласование требований к параметрическим моделям конструкций узлов и деталей ПВДП с требованиями к другим его моделям;

Разработка требований к параметрическим деформационным моделям колес центробежного компрессора и осевой турбины ПВДП;

Согласование требований к параметрическим деформационным моделям колес центробежного компрессора и осевой турбины ПВДП с требованиями к другим его моделям.

 Создание комплекса технологий изготовления, параметрически привязанных к деталям виртуального двигателя-прототипа:

Проработка концепции и методов создания параметрических технологий;

Отработка элементов технологий на тестовых моделях деталей ПВДП. Разработка требований к моделям и методам.

- Создание параметрического виртуального двигателя-прототипа;
- Создание и апробация метода вариационной(размерной) параметризации деталей МГТД с определением функционально зависимых параметров и наложением геометрических ограничений.
- Создание и апробация метода выделения семейства деталей на основе параметризованного типичного, комплексного или базового представителя группы.

Конструкторская и технологическая подготовка производства и изготовление узлов базового МГТД.

- Проведение верификации математических моделей рабочих процессов в компрессоре, турбине и камере сгорания базового.
 - Выполнение доводки узлов базового МГТД.

- Разработка методологии виртуальных испытаний ПВДП.
- Разработка методологии проектирования МГТД, удовлетворяющего требованиям
 ТЗ, на базе виртуального двигателя-прототипа.
- Разработка методологии технологической подготовки производства МГТД на базе комплекса параметрических технологий, привязанных к деталям виртуального двигателяпрототипа.
 - Приобретение оборудования для испытательного стенда.
 - Создание R&D центра и изготовление базового МГТД.
- Разработка методологии и эффективных средств комплексной борьбы с вибрацией и шумом в технических системах.
- Определение номенклатуры технических систем (далее Объектов), в которых требуется подавление вибрации и шума.
- Классификация гасителей пульсаций давления рабочей среды, вибрации и шума (далее Гасителей).
- Разработка физико-математических моделей источников колебаний в Объектах с
 учётом взаимодействия вибрационных и акустических процессов:

Уточнение физических моделей источников колебаний в Объектах с учётом взаимодействия вибрационных и акустических процессов;

Разработка математических моделей источников колебаний в Объектах с учётом взаимодействия вибрационных и акустических процессов.

- Разработка метода построения комплексной параметрической модели Объекта с учетом его динамического взаимодействия с окружающей средой и Гасителями:
- Модернизация и разработка экспериментальных установок для верификации и отработки разрабатываемых моделей, методов и средств борьбы с вибрацией и шумом.
- Разработка параметрической технологической модели формирования
 механических характеристик диссипативных элементов Гасителей.
- Разработка методологии комплексной эффективной борьбы с вибрацией и шумом
 в технических системах с применением методов глобальной оптимизации. Создание модельного Объекта и проведение верификации разработанной методологии.
- Создание роботизированной технологической линии производства и упаковки диссипативных элементов Гасителей:

Обзор и анализ основных способов изготовления гасителей вибрации из материала МР.

Обоснование и выбор принципиальной схемы базового варианта автоматизированного производства гасителей вибрации из МР.

– Создание R&D центра и выход на международный рынок с эффективными средствами борьбы с вибрацией и шумом в технике.

3 Развитие кадрового состава НПР

Привлечение к консультированию сквозных проектов заместителя генерального конструктора ПАО «Кузнецов» Кочерова Е. П., главного конструктора ОАО «Металлист» Федорченко Д. Г. и ведущих специалистов данных предприятий; привлечение к проведению инновационных исследовательских лабораторных работ и к консультированию дипломного проектирования в области междисциплинарного параметрического моделирования напряженно-деформационных и термогазодинамических процессов в ГТД аспирантов 3 года обучения (их число в ИДЭУ составляет 31 чел.); привлечение к проведению лекционных занятий ведущих отечественных и зарубежных специалистов в области двигателестроения (в том числе в дистанционной форме); осуществление долгосрочных и краткосрочных стажировок молодых преподавателей в ведущих зарубежных и отечественных научноцентрах; направление образовательных молодых преподавателей зарубежные университеты для получения степени PhD.

Развитие кадрового состава научных работников будет обеспечено за счет: существенного увеличения объема внебюджетных средств при выполнении через R&D центры различных проектов и обеспечение на этой основе приема на работу талантливых выпускников; создание эффективной системы выявления талантливой молодежи и организация её индивидуальной подготовки через участие в реальных проектах; создание коопераций с ведущими отечественными и зарубежными научно-техническими центрами; участие в реализации проектов совместно с Фондом перспективных исследований; проведение и участие в летних школах для аспирантов и докторантов.

Таблица показателей результативности САЕ

№	Показатель	2015 факт	2016 план	2017 план	2018 план	2019 план	2020 план
1	Позиция в отраслевом (предметном) рейтинге QS Engineering and Technology: Mechanical, Aeronautical and Manufacturing	300+	300+	101- 300	175- 200	125- 150	75- 100
2	Количество публикаций в базе Web of Science на одного НПР САЕ	0,28	0,35	0,45	0,55	0,65	0,7
3	Количество публикаций в базе Scopus на одного НПР САЕ	1,9	2,5	3	4	6	8
4	Средний показатель цитируемости на одного НПР САЕ, рассчитываемый по совокупности публикаций, учтённых в базе Web of Science		0,3	0,5	1	1,5	2
5	Средний показатель цитируемости на одного НПР САЕ, рассчитываемый по совокупности публикаций, учтённых в базе Scopus		3	7	9	15	20
6	Доля зарубежных профессоров, преподавателей и исследователей в численности НПР САЕ, включая российских граждан – обладателей степени PhD зарубежных университетов	1	2	4	6	10	16
7	Доля иностранных студентов, обучающихся на основных образовательных программах, реализуемых САЕ (с учётом из стран СНГ)		8	9,5	10,5	12	13,5
8	Средний балл единого государственного экзамена (ЕГЭ) студентов САЕ, принятых для обучения по очной форме обучения за счёт средств федерального бюджета	72.6	73,5	74	75	76	77
9	Доля доходов из внебюджетных источников в структуре доходов САЕ	0,52	0,53	0,54	0,55	0,62	0,66

Количественные характеристики развития САЕ

No	Показатели деятельности САЕ	2015 факт	2016 план	2017 план	2018 план	2019 план	2020 план
1	Количество основных программ высшего образования САЕ, имеющих международную профессионально-общественную аккредитацию	2	4	6	7	7	7
2	Количество основных программ высшего образования САЕ, полностью реализуемых на иностранном языке	4	4	6	7	7	7
3	Количество реализуемых основных программ высшего образования САЕ, ведущих к получению двух дипломов		4	6	7	7	7

4	Доля численности обучающихся в САЕ по основным программам высшего образования, участвующих в выполнении НИР САЕ, в общей численности обучающихся в САЕ по основным программам высшего образования	4	5,5	8	10	12	14
5	Доля численности обучающихся в САЕ по основным программам высшего образования в общей численности обучающихся в университете по основным программам высшего образования	4,6	4,8	5,2	5,5	6	6,5
5a	То же по программам бакалавриата (специалитета)	4,8	5	5,5	6	6,5	7
56	То же по программам магистратуры	2,4	6	8	10	12	15
5в	То же по программам аспирантуры	17,9	18	19,5	20	20,5	21
6	Доля численности НПР САЕ, являющихся авторами публикаций, индексируемых базами данных Scopus или Web of Science, в общей численности НПР САЕ		0,95	0,95	0,95	0,95	0,95
7	Доля численности НПР САЕ в общей численности НПР университета	7,8	8,2	8,6	9,0	9,5	10
8	Количество результатов интеллектуальной деятельности (РИД), созданных САЕ	24	26	28	30	32	35
9	Среднее значение нормализованного импакт-фактора (Source-Normalized Impact per Paper (SNIP)) журналов, индексируемых в базе данных Scopus, в которых опубликованы статьи НПР САЕ в отчётном году	0,2	0,3	0,4	0,5	0,6	0,8

Финансовая модель стратегической академической единицы

	2015	2016	2017	2018	2019	2020
	факт	план	план	план	план	план
доходы всего:	525,9	577	635	730	790	900
1. Средства бюджета	250,3	267	290	330	310	300
1.1. Субсидия на выполнение государственного задания по образовательным услугам	98,6	102	105	110	115	120
1.2. Субсидия на выполнение государственного задания по научно-исследовательской деятельности	14,09	15	15	20	25	30
1.3. Прочие субсидии и средства бюджетов	137,6	190	190	190	170	150
2. Внебюджетные средства	275,6	300	345	400	480	600
2.1. Доходы от платной образовательной деятельности	24,29	30	35	40	45	50
2.2. Доходы от научной деятельности (выполнение НИР, включая гранты РНФ, РФФИ и РГНФ и др.)	251,4	270	300	350	420	500
2.3. Доходы от использования результатов интеллектуальной деятельности	-	-	-	-	-	-
3. Прочие доходы	-	-	-	-	-	-
РАСХОДЫ ВСЕГО:		577	635	730	790	900
1. Расходы по отдельным элементам классификации операций сектора госуправления	112,9	120	130	140	150	160
1.1. Расходы по оплате труда	82,4	87,6	94,9	102,2	109,5	116,8
1.2. Расходы на приобретение оборудования и расходных материалов	4,6	4,8	5,2	5,6	6	6,4
1.3. Прочие текущие расходы	25,9	27,6	29,9	32,2	34,5	36,8
1.4. Капитальные вложения и инвестиции	-	-	-	-	-	-
2. Расходы на финансирование научных исследований CAE	413	457	505	590	640	740
2.1. Разработка новой технологии создания МГТ	267,7	306,2	338,4	395,3	428,8	495,8
2.2. Разработка высокоэффективных методов и средств борьбы с вибрацией и шумом	136,3	150,8	166,6	194,7	211,2	244,2
3. Прочие расходы		-	-	-	-	-
ДЕФИЦИТ/ПРОФИЦИТ	-	-	-	-	-	-

Первый проректор — проректор по науке и инновациям

А.Б. Прокофьев

Проректор по учебной работе

В.Н. Матвеев

В.Д. Богатырев

Проректор по образовательной и международной деятельности

А.И. Ермаков

Заместитель научного руководителя САЕ «Газотурбинное двигателестроение»

Начальник

планово-финансового управления

С.Г. Матвеев