МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

На правах рукописи

Финогенов Антон Александрович

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМАХ С УЧАСТИЕМ ГАЛОГЕНИДОВ, СУЛЬФАТОВ И КАРБОНАТОВ ЩЕЛОЧНЫХ МЕТАЛЛОВ

1.4.1. Неорганическая химия

диссертация на соискание ученой степени кандидата химических наук

Научный руководитель: Гаркушин Иван Кириллович, доктор химических наук, профессор

CAMAPA - 2024

СОДЕРЖАНИЕ

ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ И СОКРАЩЕНИЙ	4
ВВЕДЕНИЕ	5
ГЛАВА 1. АНАЛИТИЧЕСКИЙ ОБЗОР1	1
1.1. Применение ионных расплавов многокомпонентных солевы систем	x 1
1.1.1. Применение фторидных солей1	4
1.1.2. Применение хлоридных солей1	6
1.1.3. Применение бромидных солей1	7
1.1.4. Применение иодидных солей1	9
1.1.4. Применение карбонатов щелочных металлов	0
1.2.1 Экспериментальные методы изучения солевых систем2	1
ГЛАВА 2. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ2	5
2.1. Моделирование ликвидусов систем MHal-MBr-M ₂ CO ₃ (M ₂ SO ₄) (MNa ⁺ , K ⁺ , Hal ⁻ Br ⁻ , I ⁻)	М 25
2.2. Трехкомпонентная взаимная системы Li ⁺ ,Na ⁺ Br ⁻ ,CO ₃ ²⁻ 2 ⁻	7
2.3. Моделирование ликвидуса системы Li ⁺ ,Na ⁺ Br ⁻ , CO ₃ ²⁻ 30	6
2.4. Трехкомпонентная взаимная системы Cs ⁺ ,Li ⁺ Br ⁻ , CO ₃ ² 38	8
2.5. Моделирование ликвидуса системы Cs ⁺ ,Li ⁺ Br ⁻ , CO ₃ ²⁻ 5	1
2.6. Расчет минимумов трехкомпонентных систем MHal-MBr-M ₂ CC (M ₂ SO ₄) (M- Na ⁺ , K ⁺ , Hal-Br ⁻ , I ⁻) методом Мартыновой – Сусарева) ₃ 3
Глава 3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	4
3.1. Применяемые экспериментальные методы	5
3.1.1. Дифференциальный термический анализ5	5
3.1.2. Определение энтальпий фазовых превращений	7
3.1.3. Рентгенофазовый анализ57	7
3.2. Исходные вещества	8
3.3. Трехкомпонентные системы	1
3.3.1. Трехкомпонентная система NaCl-NaBr-Na ₂ CO ₃ 6	1
3.3.2. Трехкомпонентная система NaCl-NaBr-Na ₂ SO ₄	4
3.3.3. Трехкомпонентная система NaI-Na ₂ CO ₃ -Na ₂ SO ₄	7

3.3.4. Трехкомпонентная система NaI-NaBr-Na ₂ SO ₄	69
3.3.5. Трехкомпонентная система KI-KBr-K ₂ CO ₃	73
3.3.6. Трехкомпонентная система KI-KBr-K ₂ SO ₄	75
3.4. Четырехкомпонентные системы	79
3.4.1. Четырехкомпонентная система LiCl-LiBr-Li ₂ CO ₃ - ₂ SO ₄	79
3.4.2. Четырехкомпонентная система NaCl-NaBr-Na ₂ CO ₃ -Na ₂ SO ₄	
3.4.3. Четырехкомпонентная система KCl-KBr-K ₂ CO ₃ -K ₂ SO ₄	
3.4.4. Четырехкомпонентная система KI-KBr-K ₂ CO ₃ -K ₂ SO ₄	91
3.4. Трехкомпонентные взаимные системы	94
3.4.1. Трехкомпонентная взаимная системы Li ⁺ ,Na ⁺ Br ⁻ ,CO ₃ ²⁻	94
3.4.2. Трехкомпонентная взаимная системы $Cs^+, Li^+ Br^-, CO_3^{2^-}$	99
4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ	
4.1. Анализ теоретических и экспериментальных данных по из	ученным
системам	106
4.2. Анализ топологии ликвидусов трехкомпонентных систем	146
ЗАКЛЮЧЕНИЕ	
СПИСОК ЛИТЕРАТУРЫ	155
Приложение	175

ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ И СОКРАЩЕНИЙ

- × е эвтектика двойная
- \triangle E эвтектика тройная
- − → − р − перитектика двойная
 - Р перитектика тройная
 - R точка выклинивания
 - точка минимума твердых растворов в двойной системе
- — двойное соединение инконгрузнтного плавления D_и
- — двойное соединение конгрузнтного плавления D_к
 - М точка минимума твердых растворов в тройной системе
 - ТАМ –теплоаккумулирующие материалы
 - МКС многокомпонентные системы
 - ДТА дифференциальный термический анализ
 - ДТГ дифференциальная термогравиметрия
 - ХИТ химический источник тока
 - ДСК дифференциальная сканирующая калориметрия
- $\Delta_{\rm f} {\rm H^o}_{298}$ энтальпия образования вещества, кДж/моль
- $\Delta_{\rm f} {\rm G}^{\circ}_{298}$ энергия Гиббса, кДж/моль
- Δ_mH удельная энтальпия плавления, кДж/кг

введение

Актуальность темы. В настоящее время многие функциональные материалы (электролиты для химических источников тока, теплоаккумулирующие смеси, растворители неорганических веществ и др.) содержат соли щелочных элементов. Кроме того, такие соли, как сульфаты, карбонаты, фториды участвуют в процессах получения стекла и керамики. Также многокомпонентные солевые системы с участием солей щелочных элементов применяются в промышленности в качестве флюсов для сварки и пайки, для извлечения урановых и трансурановых элементов из облученного ядерного топлива, синтеза металлов и сплавов и многих других отраслях.

Многокомпонентные системы на основе галогенидов, сульфатов и карбонатов s¹-элементов изучены недостаточно, поэтому являются перспективными для создания материалов на основе как эвтектических смесей, так и смесей на основе твердых растворов. Также изучение солевых систем позволяет выявить закономерности строения фазовых диаграмм, что вносит определенный вклад в общий массив теоретических знаний. Поэтому исследование систем из галогенидов, сульфатов, карбонатов щелочных металлов является актуальной задачей.

Объектом исследования в данной работе являются системы MeHal-MeBr-Me₂SO₄-Me₂CO₃ (Me – Li, Na, K, Cs; Hal – F, Cl, I) и системы меньшей мерности, входящие в них. Предметом изучения является исследование фазовых комплексов систем.

Работа выполнена в рамках проектной части государственного задания Минобрнауки РФ Самарского государственного технического университета № 0778-2020-0005 и № FSSE-2023-0003

Степень разработанности темы. Обзор научной и патентной литературы выявил, что несмотря на большое количество проведенных исследований в области

изучения различных двухкомпонентных и некоторых трех- и четырехкомпонентных систем на основе галогенидов, сульфатов и карбонатов s¹элементов четырехкомпонентные системы MeHal-MeBr-Me₂SO₄-Me₂CO₃ (Me – Li, Na, K, Cs; Hal – F, Cl, I) и некоторые трехкомпонентные, входящие в их состав, а также трехкомпонентные взаимные системы Li⁺,Me⁺||Br⁻, CO₃²⁻ (Me⁺- Na⁺,Cs⁺), остались неизученными.

Цель работы: моделирование и исследование фазовых равновесий, закономерностей строения фазовых комплексов, химического взаимодействия в некоторых трех- и четырехкомпонентных системах из галогенидов, карбонатов, сульфатов лития, натрия, калия, цезия.

Основные задачи исследования:

– геометрическое моделирование фазовых комплексов трехкомпонентных систем, входящих в комплекс MeHal-MeBr-Me₂SO₄-Me₂CO₃ (Me – Li, Na, K, Cs; Hal – F, Cl, I) и трехкомпонентных взаимных систем Li⁺,Me⁺||Br⁻,CO₃²⁻(Me⁺- Na⁺,Cs⁺);

– описание химического взаимодействия в тройных взаимных системах
 Li⁺, Me⁺||Br⁻, CO₃²⁻(Me⁺- Na⁺, Cs⁺);

– экспериментальное исследование систем входящих в комплекс MeHal-MeBr-Me₂SO₄-Me₂CO₃²⁻(Me – Li, Na, K, Cs; Hal – F, Cl, I), определение удельной энтальпии плавления и расчет по полученным экспериментальным данным энтропии плавления, удельной объемной энтальпии плавления;

– расчет свойств смесей (удельная энтальпия плавления, плотность, удельная теплоемкость, удельная электропроводность), отвечающих точкам нонвариантных равновесий;

 анализ топологии ликвидусов в некоторых рядах галогениднокарбонатных и галогенидно-сульфатных систем.

Научная новизна работы:

– впервые проведено геометрическое моделирование фазовых комплексов трех- и четырехкомпонентных систем MeHal-MeBr-Me₂SO₄-Me₂CO₃ (Me – Li, Na, K, Cs; Hal – F, Cl, I);;

 проведен расчет температур плавления и составов низкоплавких смесей минимумов и эвтектик в трехкомпонентных системах;

 построены древа фаз и описано химическое взаимодействие в трехкомпонентных взаимных системах Li⁺, Me⁺||Br⁻, CO²⁻₃(Me⁺- Na⁺, Cs⁺);

– описаны химические взаимодействия для смесей отвечающих точкам эквивалентности и методом ионного баланса для произвольно выбранных смесей в системах Li⁺,Me⁺||Br⁻,CO²⁻₃(Me⁺- Na⁺,Cs⁺);

– впервые экспериментально изучены 6 трехкомпонентных систем (NaCl-NaBr-Na₂CO₃, NaCl-NaBr-Na₂SO₄, NaI-Na₂SO₄, NaI-NaBr-Na₂SO₄, KI-KBr-K₂CO₃, KI-KBr-K₂SO₄), две трехкомпонентные взаимные (Li⁺;Me⁺||Br⁻,CO²⁻₃), 4 четырехкомпонентных систем (LiCl-LiBr-Li₂CO₃-Li₂SO₄, NaCl-NaBr-Na₂CO₃-Na₂SO₄, KCl-KBr-K₂CO₃-K₂SO₄, KI-KBr-K₂CO₃-K₂SO₄);

– определены температуры и энтальпии плавления смесей, отвечающих
 9 составам с минимальной температурой и 5 эвтектическим точкам;

– описаны фазовые равновесия для всех элементов фазовых диаграмм;

Практическая значимость работы:

Экспериментально получены данные о координатах низкоплавких смесей минимумов и эвтектик, а также их энтальпии плавления в системах NaCl-NaBr-Na₂CO₃, NaCl-NaBr-Na₂SO₄, NaI-Na₂CO₃-Na₂SO₄, NaI-NaBr-Na₂SO₄, KI-KBr-K₂CO₃, KI-KBr-K₂SO₄; LiCl-LiBr-Li₂CO₃-Li₂SO₄, NaCl-NaBr-Na₂CO₃-Na₂SO₄, NaI-NaBr-Na₂CO₃-Na₂SO₄, NaI-NaBr-Na₂CO₃-Na₂SO₄, KI-KBr-K₂CO₃-K₂SO₄, KI-KBr-K₂CO₃-Na₂SO₄, KI-KBr-K₂CO₃-K₂SO₄, Li⁺,Me⁺||Br⁻,CO²⁻₃. Выявленные низкоплавкие смеси могут служить основой для разработки теплоаккумулирующих материалов и расплавляемых электролитов XИТ, а также средами для растворения неорганических веществ. На смесь LiCl-LiBr-Li₂CO₃-Li₂SO₄ получен патент РФ № 2778349. Данные о фазовых комплексах систем представляют интерес как справочный материал.

Методология и методы исследования. Диссертационная работа основана на общепринятых методах изучения фазовых равновесий в

многокомпонентных солевых системах. В качестве источников информации использовались оригинальные научные статьи, материалы конференций, информация об объектах интеллектуальной собственности, монографии и справочная литература. При организации и проведении экспериментального и теоретического исследования, использовались общенаучные и специальные дифференциальный методы, такие как термический анализ (ДТА), рентгенофазовый анализ (PΦA), термогравиметрия $(T\Gamma A),$ дифференциальная сканирующая калориметрия (ДСК). Для расчета составов минимумов на моновариантных кривых в тройных системах и эвтектик в тройных взаимных системах использовался расчетный метод Мартыновой-Сусарева, с помощью программы «АС Моделирование фазовых диаграмм».

На защиту диссертационной работы выносятся:

1. Результаты моделирования ликвидусов, координат смесей с минимальной температурой плавления в трехкомпонентных системах NaCl-NaBr-Na₂CO₃, NaCl-NaBr-Na₂SO₄, NaI-Na₂CO₃-Na₂SO₄, NaI-NaBr-Na₂SO₄, KI-KBr-K₂CO₃, KI-KBr-K₂SO₄.

2. Результаты описания химического взаимодействия конверсионным методом и методом ионного баланса в системах Li⁺,Na⁺||Br⁻,CO₃²⁻, Li⁺,Cs⁺||Br⁻, CO₃²⁻.

3. Результаты экспериментального исследования методами ДТА, ДСК, ТГА, РФА шести трехкомпонентных систем (NaCl-NaBr-Na₂CO₃, NaCl-NaBr-Na₂SO₄, NaI-Na₂CO₃-Na₂SO₄, NaI-NaBr-Na₂SO₄, KI-KBr-K₂CO₃, KI-KBr-K₂SO₄), пяти четырехкомпонентных систем (LiCl-LiBr-Li₂CO₃-Li₂SO₄, NaCl-NaBr-Na₂CO₃-Na₂SO₄, NaI-NaBr-Na₂CO₃-Na₂SO₄, NaCl-NaBr-Na₂CO₃-Na₂SO₄, NaI-NaBr-Na₂CO₃-Na₂SO₄, KCl-KBr-K₂CO₃-K₂SO₄, KI-KBr-K₂CO₃-K₂SO₄, NaI-NaBr-Na₂CO₃-Na₂SO₄, KCl-KBr-K₂CO₃-K₂SO₄, KI-KBr-K₂CO₃-K₂SO₄, MaI-NaBr-Na₂CO₃-Na₂SO₄, KI-KBr-K₂CO₃-K₂SO₄, KI-KBr-

4. 9 смесей с минимальной температурой плавления на моновариантных кривых, 5 эвтектических смесей.

5. Результаты расчета свойств исследованных смесей.

Степень достоверности. Результаты проведенных исследований были получены с применением сертифицированного и поверенного оборудования для обеспечения воспроизводимости данных, в том числе с использованием оборудования центра коллективного пользования СамГТУ.

Личное участие автора в получении научных результатов. Автором лично сформирована тема, определены цели и задачи на основе анализа литературных источников, проведены организация, планирование и исполнение экспериментального исследования на базе федерального бюджетного образовательного учреждения государственного высшего «Самарский государственный технический образования университет». Обсуждение к публикации И подготовка полученных результатов проводилось с участием соавторов с определяющим вкладом диссертанта. Общая постановка цели и задач диссертационного исследования проведена совместно с научными руководителями. Финогеновым А. А. получены следующие наиболее существенные научные результаты:

 проведено геометрическое моделирование ликвидусов тройных и тройных взаимных систем;

описано химическое взаимодействие в трехкомпонентных взаимных системах Li⁺, Me⁺||Br⁻, CO²⁻3;

 – рассчитаны координаты эвтектик и минимумов в тройных и тройных взаимных системах;

–экспериментально изучены 6 трехкомпонентных систем (NaCl-NaBr-Na₂CO₃, NaCl-NaBr-Na₂SO₄, NaI-Na₂CO₃-Na₂SO₄, NaI-NaBr-Na₂SO₄, KI-KBr-K₂CO₃, KI-KBr-K₂SO₄), две трехкомпонентных взаимных системы(Li⁺,Me⁺||Br⁻,CO²⁻₃), 5 четырехкомпонентных систем (LiCl-LiBr-Li₂CO₃-Li₂SO₄, NaCl-NaBr-Na₂CO₃-Na₂SO₄, NaI-NaBr-Na₂CO₃-Na₂SO₄, KCl-KBr-K₂CO₃-K₂SO₄, KI-KBr-K₂CO₃-K₂SO₄, KI-KBr-K₂CO₃-K₂SO₄);

определены составы, температуры и энтальпии плавления смесей,
 отвечающих 9 составам с минимальной температурой и пяти эвтектик;

9

 описаны фазовые равновесия и составы всех элементов фазовых диаграмм;

– получен патент на теплоаккумулирующую смесь.

Апробация работы. Результаты работы в форме докладов И сообщений обсуждались и докладывались на научных конференциях: XX Всероссийская конференция молодых учёных-химиков (с международным участием) (Нижний Новгород 2017), Международная молодежная научная конференция "XIV Королёвские чтения", посвящённая 110-летию со дня Королёва, академика С.П. 75-летию КуАИ-СГАУ-СамГУрождения Самарского университета и 60-летию со дня запуска первого искусственного спутника Земли (Самара 2017), Всероссийская научно-практическая междисциплинарная конференции "Молодежь. Наука. Общество" (Тольятти 2018), Физика. Технологии. Инновации ФТИ-2019 (Екатеринбург 2019), Физика. Технологии. Инновации ФТИ-2020 (Екатеринбург 2020), Физика. Технологии. Инновации ФТИ-2020 (Екатеринбург 2021), XII Международное Курнаковское совещание по физико-химическому анализу (Санкт-Петербург 2022).

Публикации. По содержанию исследования опубликовано 10 печатных и электронных работ, включая 3 статьи, опубликованные в рецензируемых научных журналах, 6 работ в трудах научных конференций и один патент.

Структура и объем работы. Диссертационная работа изложена на 175 страницах и включает введение, аналитический обзор, экспериментальную часть, обсуждение результатов, заключение и список литературы из 165 наименований; таблиц 8; рисунков 99.

ГЛАВА 1. АНАЛИТИЧЕСКИЙ ОБЗОР

1.1. Применение ионных расплавов многокомпонентных солевых систем

Многокомпонентные системы различного состава встречаются повсеместно в окружающем мире. Их применение на практике позволяет выполнять запросы отраслей промышленности и научных лабораторий на функциональные И конструкционные материалы. Солевые системы применяют для получения металлов из расплавов методом электролиза. Данный метод позволяет получать конечный продукт высокой чистоты с минимальными финансовыми затратами. Процесс основан на осуществлении окислительно-восстановительных реакций за счет воздействия электрической энергии. Например, электрохимическое осаждение в расплавах солевых композиций применяется для получения урана [1-4].

Ионные расплавы применяются для получения не только чистых металлов, но и сплавов. Во второй половины 20 века и интерметаллические соединения, и сплавы широко применяются в электронике и металлургии, так как их свойства являются важными при разработке новых материалов. Система из хлоридов калия и лития, применяется для получения сплава эрбия с никелем [5]. Алюмокремниевые сплавы получают из расплава фторидной системы калия и алюминия электролизом на графитовом катоде [6]. Сплав церия и алюминия синтезируют из двухкомпонентной системы калия и алюминия [7].

В атомной промышленности существует проблема переработки отработанного ядерного топлива. Она осуществляется с целью получения ценных компонентов. В качестве решения используются пирохимические методы переработки, основанные на восстановлении оксидов металлов в расплавах солей. Для этих целей применяются системы на основе хлоридов лития, натрия и калия [8,9].

Помимо переработки топлива, солевые системы применяются в качестве теплоносителей в жидкосолевых ядерных реакторах. В реакторах на расплавах неорганических солей, в качестве охлаждающей жидкости используется смесь расплавленных солей. В некоторых случаях, ядерное топливо также находится в жидком состоянии. Это увеличивает безопасность, упрощает конструкцию и позволяет менять топливо без остановки энергетического цикла. Использование жидкосолевых реакторов сокращает объёмы радиоактивных отходов. [10,11].

Жидкосолевые реакторы используют в качестве реакторов размножителей. Этот тип реакторов производит топливо, которое превышает используемое самим реактором. Существует концепция реактора для сжигания трансурановых элементов отработанного топлива. Исследования в сфере разработки новых жидкосолевых реакторов идут по пути создания конструкционных материалов и поиска оптимальных солей-носителей для рабочего тела [12-14].

Ионные расплавы используются электролитов ДЛЯ создания химических источников тока. Это устройства, в которых энергия химических реакций превращается в электрическую энергию [15]. По принципу работы ХИТ делятся на группы: первичные и вторичные, или аккумуляторы. Первичные ХИТ после разряда до конечного напряжения подлежат утилизации, вторичные же после разряда могут быть многократно заряжены для продолжения работы. Выделяют класс электрохимических генераторов, основу которых составляют топливные элементы. Они работают с использованием активных компонентов, постоянно подводимых извне. Чётко выраженной границы между указанными группами ХИТ нет: некоторые типы первичных элементов могут быть подзаряжены, в то же время аккумуляторы иногда разряжаются только однократно. Выбирая между аккумуляторами И первичными элементами, конструкторы аппаратуры обычно учитывают, что первые, как правило, обладают большей мощностью, в то время как первичные элементы, более высокой удельной

12

энергией [16]. Существуют низкотемпературные [17] и высокотемпературные XИТ [18].

Теплоаккумулирующие материалы. Использование данных материалов связанно с тем, что производство энергии, потребность в ней не синхронизированы. Таким образом, важно сохранить энергию, до момента использования. Многие десятилетия ведутся исследования по созданию систем хранения тепловой энергии. В них аккумулируется тепло, которое в основном затрачивается на обогрев помещений и нагрев воды. Также данная технология связана с системами с участием возобновляемых источников энергии. Разработка ТАМ, связана с поиском функциональных материалов на основе индивидуальных или многокомпонентных систем, с наиболее выгодными свойствами [19].

Аккумуляторы тепла делятся по рабочим температурам на три группы. высокотемпературные (выше 500°С), среднетемпературные (100°С – 500°С), низкотемпературные (35°С -100°С). По времени хранения на краткосрочные (до двух суток), среднесрочные (до месяца), долгосрочные (до шести месяцев). По масштабам использования на мелкомасштабные и крупномасштабные.

Теплоаккумулирующие материалы можно разделить на две большие группы. Это теплоаккумуляторы однократного действия, который базируются на реакциях термохимического разложения и многократного действия, бывают которые В свою очередь теплоёмкостными, термохимическими и фазопереходными. Фазопереходные делятся по типу фазового перехода (твёрдое жидкое, твердое-твердое, жидкое газ, твердое газ). По химическому составу эти материалы могут быть оксидными, металлическими, солевыми, органическими и кристаллогидратными.

Основные требования к теплоаккумулирующим материалам — это высокая теплоемкость, термическая и химическая стабильность, высокая теплопроводность.

13

Существует широкий спектр материалов на основе солевых систем. Например, на основе фторидов лития, натрия и калия [20-23], хлорида и сульфата лития, калия и цезия [24]. Солевые теплоаккумулирующие материалы чаще всего являются фазопереходными. Фазовые переходы в них могут быть связаны не только с изменением агрегатного состояния, но и с полиморфными переходами (изменение кристаллической решётки) и присоединением либо отдачей воды.

1.1.1 Применение фторидов щелочных металлов

Фторид лития. Литиевая соль плавиковой кислоты. Представляет собой белый порошок или прозрачные кристаллы кубической сингонии, пространственная группа Fm3m. Трудно растворим в воде. Плавится при температуре 848°С. Фторид лития применяется в качестве добавки для создания низкотемпературной керамики на основе Li₂SiO₃ с высокой теплопроводностью [25]. Помимо этого, фторид лития используется для создания прозрачной керамики, обладающей высокими коэффициентом пропускания, твёрдостью И прочностью на сжатие. Более того теплопроводность у данной керамики выше, чем у типичной фторидной керамики на основе CaF₂ [26]. Прозрачная керамика применяется для изготовления сцинтилляторов, матриц для твердотельных генераторов и линз фотоаппаратуры. Они отличаются лучшими оптическими для характеристиками по сравнению с классическими кварцевыми линзами. Также известна диэлектрическая керамика с низкой линейной усадкой [27]. Эта керамика применяется, например, в качестве плат для интегральных схем, диэлектрических волноводов и антенн, резонаторов и компонентов в ферритовых приборах. Фторид лития используется В безанодных батареях, обладающих функциональными металлических высокими [28], показателями И В электролите, позволяющем создавать высокоэнергетические литий-металлические батареи, которые отличаются высокой плотностью заряда, меньшими размерами и высокой скоростью зарядки [29].

Фторид натрия. Белый порошок, трудно растворимый в воде. Не образует кристаллогидраты. Хорошо растворяется в безводной плавиковой кислоте. Пространственная группа Fm3m. Применяется для создания люминофоров ап-конверсии. Эти люминофоры действуют на основании явления, при котором материал при взаимодействии с возбуждающим электромагнитным излучением с определенной длиной волны испускает излучение с высокой энергией и малой длиной волны [30]. Фторид натрия входит в состав регенерируемого катализатора для производства водорода из метанола, который намного дешевле своих аналогов на основе благородных металлов. При этом конверсия метанола составляет 94%, а селективность по водороду составляет 100%. Данный катализатор имеет отличные свойства [31]. Фторид натрия входит в состав электролитов [32] и используется в качестве компонента жидкостей теплоносителей для хранения тепловой энергии в системах концентрации солнечной энергии [33].

Фторид калия. Средняя калиевая соль плавиковой кислоты. В природе встречается в виде редкого минерала кароббиита. В промышленности получают из флюорита и поташа. Бесцветные кристаллы, хорошо растворяется в воде. Образует ряд кристаллогидратов. Пространственная Фторид калия применяется группа Pm3m. В качестве добавки В нанокомпозитный люминофор, который излучает белый свет высокой яркости при возбуждении с помощью диодного лазера [34]. Используется в качестве компонента боратного стекла, используемого в области оптических коммуникаций, фотонных устройств и лазерных хостов [35]. Также фторид калия входит в состав тонкоплёночных солнечных элементов [36]. Фторидом калия пропитывают наночастицы природного цеолита, для получения нового гетерогенного катализатора для синтеза бензодиазепинов [37].

Фторид цезия. Бесцветные кристаллы, кубической сингонии, пространственная группа Fm3m. Хорошо растворим в воде, подвергается

частичному гидролизу, образует кристаллогидраты. Применяется в качестве добавки, улучшающей эксплуатационные свойства термохимического теплоаккумулирующего материала на основе карбоната калия [38]. Также используется в качестве катализатора. Фторид наносят на основу из активированного угля в виде водного раствора. Катализатор применяется для синтеза фторорганических веществ. Фторид цезия входит в состав композита на основе карбида кремния, армированного коротким углеродным волокном [39]. Также фторид цезия используют в составе цемента для увеличения прочности, когезивности и плотности упаковки [40].

1.1.2 Применение хлоридов щелочных металлов

Хлорид лития. Белые гигроскопичные кристаллы, расплывающиеся на воздухе. Пространственная группа Fm3m. Хорошо растворяется в воде, образует Хлорид ряд кристаллогидратов. лития входит В состав адсорбционного композита, применяемого для поглощения водяного пара из воздуха. Адсорбция водяного пара поглотителями, является эффективной альтернативой охлаждающему осушению. Его преимущества заключаются в экономической выгоде за счёт снижения потребления энергии [39]. Хлорид лития применяется для восстановления металлического лития из сырья, для создания замкнутого производственного цикла катодов энергетических батарей [40]. Существует технология адсорбионного опреснения, риски пресной воды, позволяющая снизить нехватки использовать возобновляемую энергию и используемая в децентрализованных районах. В ней применяется композиционный сорбент на основе хлорида лития [41]. Расплавы хлорида лития используются в качестве компонента электролитов, для получения лития, переработки ядерного топлива[42-45]

Хлорид натрия. Прозрачные кристаллы, растворимые в воде. Пространственная группа Fm3m. Используется в качестве подложки для нанесения покрытий кадмия и ниобия [46]. Хлорид натрия входит в состав

16

смеси для восстановления меди из отходов печатных плат [47]. Добавка хлорида натрия влияет на газогидратообразование в системах хранения и транспортировки природных газов [48-50]. Для получения порошков молибдена и вольфрама [51,52]

Хлорид калия. Белые кристаллы, растворимые В воде. Пространственная группа Fm3m. Эвтектическая смесь хлорида калия с хлоридом лития используется для переработки отработанного ядерного топлива и получения из него стронция и цезия. Процесс идёт с помощью жидкого катода [53]. Монокристаллы хлорида калия, легированные способны различными катионами, К люминесценции [54]. Расплав используется для получения солей иттрия [55,56].

Хлорид иезия. Бесцветные кристаллы, растворимые В воде. Гигроскопичен, на воздухе не расплывается, не образует кристаллогидратов. Пространственная группа Рт3т. Применяется в составе расплавленной солевой системы для электроосаждения рения. Этот метод позволяет получать покрытия толщиной от нескольких микронов до нескольких миллиметров, используемых для изготовления компонентов камер сгорания, работающих при сверхвысоких температурах [57]. Хлорид цезия используется в синтезе из расплавленных солей сплавов дубния и гадолиния [58]. Известны сверхпроводники на основе хлорида цезия [59].

1.1.3 Применение бромидов щелочных металлов

Бромид лития. Серые кристаллы, расплываются на воздухе. Хорошо растворим в воде, образует ряд кристаллогидратов. Пространственная группа Fm3m. Бромид лития применяется для изготовления одноступенчатого охладителя в составе протонпроводящего твердооксидного топливного элемента [60]. Твердые электролиты на основе лития, лантана и оксида церия обладают большим потенциалом в качестве систем следующего поколения, путём повышения безопасности. В их состав вводят бромид лития для

повышения плотности критического тока [61]. Бромид лития используется в микровыпуклых углеродных аэрогелях, которые применяют для поглощения различных масел и органических растворителей [62]. Расплав применяют для синтеза синтетических волокон [63] и переработки отходов, содержащих редкоземельные металлы, такие как лантан, торий и неодим [64].

Бромид натрия. Белые кристаллы, гигроскопичен, хорошо растворим в воде. Пространственная группа Fm3m. Бромид калия применяется для модификации кальциевых сорбентов. Эта технология рассматривается как многообещающая для улавливания оксида углерода и серы [65]. Существует метод структурной модификации декстрана с участием бромида натрия. Это позволяет менять их физико-химические свойства, что напрямую влияет на область применения [66]. Помимо этого, для поглощения оксида углерода применяется керамика на основе бромида натрия и силиката лития [67].

Бромид калия. Бесцветные кристаллы, растворим В воде. Пространственная группа Fm3m. Используется в качестве добавки для фотокаталитических характеристик улучшения оксобромида висмута. Бромид лития повышает показатели морфологии и кристалличности [68]. Металлогалогенидные перовскиты, отличающиеся превосходными фотоэлектронными свойствами и возможностью обработки в растворах при низких температурах, становятся желательными кандидатами для носимой и портативной электроники следующего поколения. В их состав входит бромид калия [69]. Расплав применяется для синтеза наночастиц солей циркония [70,71]

Бромид цезия. Бесцветные кристаллы. Хорошо растворимые в воде, не образует кристаллогидратов. Пространственная группа Pm3m. Применяется для получения прозрачной керамики способной к люминесценции [72]. Для будущего массового производства наилучшим выбором будет изготовление высокоэффективных стабильных И солнечных элементов на основе перовскита. Бромид цезия используется для создания интерфейса данных элементов [73]. Также бромид цезия применяется В изготовлении

халькогенидных стёкол [74]. Расплав применяется для электроосаждения покрытий [75].

1.1.4 Применение иодидов щелочных металлов.

Иодид лития. Белые кристаллы, желтеющие на воздухе, в следствии окисления иодида до йода. Хорошо растворимы в воде. Гигроскопичен. Пространственная группа Fm3m. Он применяется для создания катодов для литий галогенных аккумуляторов, обладающих высокой плотностью энергии [76] и входит в состав твердых электролитов [77,78]. Иодид лития используется в качестве компонента сцинцилляционного материала для обнаружения нейтронов [79,80].

Иодид натрия. Белые кристаллы. Растворим в воде, спирте и глицирине. Гигроскопичен. Пространственная группа Fm3m. Используется для создания твердых электролитов [81,82] а также в сцинцилляционных детекторах [83,84]. Входит в состав некоторых многокомпонентных катализаторов, например для синтеза уретан-акрилата [85].

Иодид калия. Белые кристаллы. Растворим в воде. Гигроскоп. Пространственная группа Fm3m. Применяется в составе ингибитора коррозии металлов для защиты стали при кислотной очистке [86,87]. Иодид калия используется при создании электролитов [88], а также в составе катализаторов в органическом синтезе [89,90]. Помимо прочего, используется в качестве лекарственного средства профилактики при радиационном облучении [91].

Иодид цезия. Белые кристаллы. Растворим в воде. Не образует кристаллогидратов. Пространственная группа Рm3m. Применяется в производстве элементов солнечных панелей [92]. Иодид цезия используется в качестве сцинцилляционных материалов в детекторах ядерных излучений в физике высоких энергий, ядерной и медицинской физике. А также в оптике

инфракрасных спектрометров с преобразованием Фурье как отдельно, так и в эвтектической смеси [93,94].

1.1.4 Применение карбонатов щелочных металлов.

Карбонат лития. Бесцветные кристаллы. Плохо растворим в воде. Кристаллогидратов не образует. Пространственная группа C2/с. Применяется для выделения из него чистого лития, так как существует растущий спрос на данный металл [94,95]. Входит в состав фторосиликатного стекла [96] и керамики [97]. Карбонат лития используется для создания безанодных литийметаллических батарей [98]. Также он применяется в качестве материала для хранения тепловой энергии [99, 101]. Расплав используется для получения ниобата лития [102] и создания покрытий на основе молибдена и вольфрама [103,104].

Карбонат натрия. Бесцветные кристаллы. Хорошо растворим в воде. Образует кристаллогидраты. Пространственная группа C12/m1. Используется в качестве компонента материалов для хранения тепловой энергии [105, 106]. Эвтектическая смесь карбоната натрия с карбонатом калия, применяется для синтеза активированных углеродных волокон с высокой адсорбционной способностью [107]. Также используется для рафинирования расплава латуни [108] и плавления гранита [109].

Карбонат калия. Бесцветные кристаллы. Хорошо растворим в воде. Образует кристаллогидраты. Применяется для создания материалов хранения тепловой энергии [110, 11]. Входит в состав катализаторов для получения синтез-газа из бурого угля [112] и биодизельного топлива [113]. Расплав применяется для очистки газов содержащих оксиды азота [114], графитизации алмаза [115] и получении керамики [116].

Карбонат цезия. Бесцветные кристаллы. Хорошо растворяется в воде. Образует кристаллогидраты. Применяется при производстве солнечных элементов [117,118]. Карбонат цезия входит в состав катализатора для синтеза различных веществ [119,120] и модификации силуминов [121].

1.2.1. Экспериментальные методы изучения солевых систем.

Существует широкий спектр методов изучения многокомпонентных систем. Для создания функциональных материалов на основе солевых композиций, в первую очередь необходимо определить такие свойства как термическая стойкость, температуры фазовых переходов, теплоёмкость, электропроводность и т.д. Для этого применяется термический анализ. Это совокупность методов исследования, позволяющих изучать физикохимические процессы, вызванные изменением температуры [122].

Визуально-политермический анализ (ВПА). Основан на визуальном определении образования кристаллов в расплаве изучаемого образца при охлаждении и их исчезновение при нагревании. В качестве прибора для измерения температур может использоваться термометр, термопара и т.д. Таким образом определяется температура начала фазовых переходов. ВПА может использоваться только для изучения оптически прозрачных систем и позволяет исследовать исключительно ликвидус системы, т.к. данным методом невозможно определить переходы в твердой фазе [123,124].

Дифференциальный термический анализ (ДТА). Это метод анализа, применяемый для определения температуры фазовых превращений. Он основан на регистрации разницы температур между изучаемым образцом и эталоном сравнения. В качестве эталона выступает вещество, которое не претерпевает каких-либо изменений в выбранном интервале температур. По мимо этого к образцу сравнения предъявляются такие требования как термическая стойкость и химическая инертность как по отношению к исследуемым веществам, так и к среде, в которой производится эксперимент. Важной характеристикой является схожесть теплопроводности и теплоёмкости образца и эталона. Наличие разницы температур обусловлено выделением или поглощением теплоты в ходе фазовых превращений или протекающих реакций в исследуемом веществе. К фазовым превращениям плавление, кипение, возгонка, сублимация, конденсация, относятся полиморфные испарение так называемые переходы (изменение И вещества, кристаллической с структуры связанное зависимостью поверхностной энергией Гиббса и температуры). К химическим реакциям относятся такие процессы как дегидратация, термическое разложение, окислительно-восстановительные процессы Разделяют И т.д. экзотермические эффекты, то есть с выделением теплоты (кристаллизация и окисление) и эндотермические, то есть с поглощением (дегидратация и плавление). Результатом регистрации термоэффектов, является кривая ДТА, то есть линия, показывающая разницу температур между эталоном и образцом во времени. Наличие пика на кривой ДТА свидетельствует о произошедшем фазовом изменении. Данный метод анализа обладает большой точностью, простотой проведения эксперимента, высокой скоростью и является выгодным с экономической точки зрения, так как требует небольших масс навесок исследуемых образцов. Установки ДТА существуют в различных модификациях от простой печи и термопары, подключённой к микровольтметру, до высокотехнологичного прибора, позволяющего программировать скорость изменения температуры И создавать инертную или любую другую атмосферу для исследования образцов [125-129].

Дифференциальная сканирующая калориметрия (ДСК). Это метод, измеряющий теплоту химических превращений, основан на определении разницы тепловых потоков изучаемого образца и эталона в зависимости от температуры и времени. Принцип работы калориметра сводится к измерению разности температур между образцом и веществом, выступающим в качестве эталона сравнения в калориметрической системе, возникающей в результате выделения или поглощения теплоты. Этоо в свою очередь обусловлено прохождениями химических реакций, фазовых переходов или наличием

22

аномалий удельной теплоёмкости веществ. Существуют разнообразные варианты калориметров. Наиболее простой является схема компоновки, предусматривающая в себе следующие компоненты. В рабочем блоке дифференциального калориметра сканирующего установлен диск, изготовленный Константан термостабильный константана. ИЗ ЭТО (т.е. сохраняющий своё сопротивление при изменении температуры) сплав, состоящий из 59 % меди, 39 % никеля и 2 % марганца. На диске помещаются ячейки для тиглей с исследуемым веществом и образцом. Помимо этого, он дифференциальной является чувствительным элементом хромельконстантановой термопары [130-133].

Термогравиметрический анализ (ТГ). Метод термического анализа, определяющий изменение массы образца в зависимости от температуры. В отличие от ДТА, регистрируются кривые ТГ и ДТГ. Кривая ТГ это интегральная кривая изменения массы, которая существует в координатах температуры от изменения массы в процентах, определяющаяся уравнением m=f(T), в котором T это температура, а m изменение массы. Кривая ДТГ, это производная по температуре от функции изменения массы образца dm/dT=f(T). Изменение массы происходит за счёт прохождения химических реакций, дегидратации И термического разложения веществ. Термоанализатор состоит из держателя, на которой устанавливается тигель. Внутри неё расположена дифференциальная термопара, соединённая с регистрирующим устройством обработки информации и аналитическими весами. Данный метод позволяет использовать небольшие навески веществ, что выгодно в экономическом смысле. Внутрь печи могут подаваться газы, для создания инертной атмосферы. Также выделяемые в ходе исследования веществ газы, можно анализировать с помощью метода масс-спектрометрии (способ идентификации веществ, основанный на ионизации компонентов, позволяющий отличить компоненты на основе их отношения массы к заряду) определения Интервал для ИХ состава. температур ограничен конструкционными особенностями прибора [134-137].

Рентгенофазовый анализ (РФА). Основной задачей рентгенофазового анализа является идентификация различных фаз в смеси кристаллических веществ на основе создаваемой ими дифракционной картины. На практике наибольшее распространение получил рентгеновский порошковый метод, который в основном и используется в рентгенофазовом анализе. Проблемам рентгенофазового анализа как метода идентификации кристаллических фаз посвящено достаточно большое количество публикаций, статей, обзоров, монографических изданий (различные руководства и учебные пособия). Этот метод в настоящее время наиболее применим по сравнению с другими рентгеновскими методами. Объяснение этому заключено в том, что многие природные и синтетические, технически важные материалы чаще всего находятся в поликристаллическом состоянии, и только в таком состоянии возможно изучение их структуры и свойств. Поликристаллический материал представляет собой совокупность множества мелких, чаще всего, разориентированных кристалликов, которые могут быть плотно сцеплены между собой как в металлах и сплавах или находиться в виде измельченного порошка. Иногда поликристаллическое вещество может состоять ИЗ кристалликов различных фаз [138-141].

Качественный рентгенофазовый анализ заключается в идентификации кристаллических фаз на основе присущих им значений межплоскостных расстояний и соответствующих интенсивностей линий рентгеновского спектра. Определение фазового состава проводится путём сравнения экспериментальной рентгенограммы с эталонными данными [142-144].

ГЛАВА 2. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

2.1. Моделирование ликвидусов систем MHal-MBr-M₂CO₃ (M₂SO₄) (M Na⁺, K⁺, Hal-Br⁻, I⁻)

В системах MHal-MBr-M₂CO₃ (M₂SO₄) (M- Na⁺, K⁺, Hal-Cl⁺,I⁻) две двойные системы являются эвтектическими, а в остальных двойных системах в том числе, в системе Na₂CO₃-Na₂SO₄ образуются непрерывные ряды твердых растворов с минимумами NaCl_xBr₁ – _x, NaBr_xI_(1-x), KBr_xI_(1-x), Na₂(SO₄)_x(CO₃)_{1-x}. Данные по свойствам веществ и соединений приведены в таблице 2.1.

Возможны следующие варианты фазовых равновесных состояний в трехкомпонентных системах, включающих галогениды, бромиды, сульфаты и карбонаты натрия и калия: MHal-MBr-M₂CO₃ (M₂SO₄) (M- Na⁺, K⁺, Hal-Br⁻, I⁻).

Рисунок 2.1 – Модели вариантов ликвидусов трехкомпонентных систем с отсутствием минимума, минимумом и эвтектикой

Вариант 1. В случае если не образуются минимумы на кривых моновариантных равновесий, внутри тройных систем будет наблюдаться отсутствие минимальных точек на кривых моновариантных равновесий, соединяющих двухкомпонентные эвтектики (рис. 1.2. а).

Вариант 2. Так как на двойных сторонах MHal-MBr и M₂CO₃-M₂SO₄ образуются смеси с минимальными температурами плавления, то на кривых моновариантных равновесий также могут образовываться смеси с минимальными температурами плавления (рис. 1.2. б).

Вариант 3. В случае распада бинарных твердых растворов NaCl_xBr_{1-x}, NaBr_xI_(1-x), KBr_xI_(1-x), Na₂(SO₄)_x(CO₃)_{1-x} внутри тройных система возможен разрыв сплошности твердых растворов с образованием эвтектик (рис. 1.2. в).

	Темпера	тура	Стандартная	Стандартная
	плавления		энтальпия	энергия Гиббса
Вещества			образования	образования
	Τ, Κ	t, ⁰ C	$\Delta_{\rm f} {\rm H}^{\rm o}_{298},$	$\Delta_{\rm f}G^{\rm o}_{298},$
			кДж/моль	кДж/моль
LiF	1122.0	849.0	-614.7	-586.5
LiCl	883.0	610.0	-408.4	-384.1
LiBr	823.0	550.0	-351.0	-341.7
LiI	742.0	469.0	-270.3	-270.2
Li_2SO_4	1131.0	858.0	-1437.2	-1322.0
Li ₂ CO ₃	1005.0	732.0	-1215.5	-1131.5
NaF	1266.0	993.0	-572.8	-542.5
NaCl	1074.0	801.0	-411.4	-384.4
NaBr	1020.0	747.0	-361.2	-349.1
NaI	934.0	661.0	-288.9	-284.9
Na ₂ CO ₃	1131.0	858.0	-1129.4	-1045.7
Na_2SO_4	1157.0	884.0	-1389.5	-1271.7
KF	1131.0	858.0	-566.0	-536.4
KC1	1044.0	771.0	-436.6	-408.7
KBr	1007.0	734.0	-393.4	-380.1
KI	954.0	681.0	-327.7	-322.7
K ₂ CO ₃	1173.0	900.0	-1153.1	-1067.5
K_2SO_4	1342.0	1059.0	-1439.3	-1321.3
CsF	976.0	703.0	-553.5	-525.7
CsCl	918.0	645.0	-432.4	-413.9
CsBr	911.0	638.0	-405.5	-391.1
CsI	905.0	632.0	-346.5	-340.2
Cs ₂ CO ₃	1066.0	793.0	-1136.4	-1053.0
Cs_2SO4	1288.0	1015.0	-1444.3	-1324.9
LiBr·CsBr	578.0	305.0	-756.5	-732.8
$Li_2CO_3 \cdot Na_2CO_3$	774.0	500.0	-2344.9	-2177.2
$Li_2CO_3 \cdot Cs_2CO_3$	838.0	565.0	-2351.9	-2184.5

Таблица 2.1 – Термодинамические характеристики индивидуальных веществ и соединений

2.2. Трехкомпонентная взаимная системы Li⁺,Na⁺||Br⁻,CO₃²⁻

На рис. 2.1. приведены варианты геометрического разбиения тройной взаимной системы Li⁺,Na⁺||Br⁻,CO₃²⁻ на симплексы. На стороне Li₂CO₃-Na₂CO₃

образуется двойное соединение D_и состава Li₂CO₃·Na₂CO₃. Для определения реально существующего варианта разбиения взаимной системы используется расчет термодинамических параметров реакций ионного обмена:

$$2\text{LiBr}+\text{Na}_2\text{CO}_3=2\text{NaBr}+\text{Li}_2\text{CO}_3 \tag{2.1}$$

 $\Delta_{\rm r} {\rm H}_{298}^{\rm o} = \left((2\Delta_{\rm f} {\rm H}_{298}^{\rm o} {\rm NaBr}) + \Delta_{\rm f} {\rm H}_{298}^{\rm o} {\rm Li}_2 {\rm CO}_3 \right) - \left((2\Delta_{\rm f} {\rm H}_{298}^{\rm o} {\rm LiBr}) \right) + \\ + \left(\Delta_{\rm f} {\rm H}_{298}^{\rm o} {\rm Na}_2 {\rm CO}_3 \right) \right)$

Δ_rH^o₂₉₈ = ((2(−361.2) + (−1215.5))) − ((2(−351.0) + (−1129.4)) = −106.5 кДж.

 $\Delta_r G_{298}^o = \left(\left(2\Delta_f G_{298}^o \text{NaBr} \right) + \Delta_f G_{298}^o L i_2 \text{CO}_3 \right) - \left(\left(2\Delta_f G_{298}^o \text{LiBr} \right) \right) + \left(\Delta_f G_{298}^o \text{Na}_2 \text{CO}_3 \right) \right)$

 $\Delta_r G^o = \left(\left(2(-349.1) \right) + (-1131.5) \right) - \left(\left(2(-341.7) \right) + (-1045.7) \right) =$

-100,6 кДж.

Рисунок 2.2 – Геометрические варианты разбиения тройной взаимной системы Li⁺,Na⁺||Br⁻,CO₃²⁻

Для определения реально существующего варианта разбиения взаимной системы используется расчет термодинамических параметров реакций ионного обмена. На основании термодинамического расчета наиболее вероятным вариантом является следующее разбиение: стабильная диагональ NaBr-Li₂CO₃ и стабильная секущая NaBr-D_и разбивают квадрат составов на три вторичных фазовых треугольника LiBr-NaBr-Li₂CO₃, NaBr-Li₂CO₃-D_и и NaBr-Na₂CO₃-D_и (рис. 2.3):

Рисунок 2.3 – Вариант термодинамического разбиения Li⁺, Na⁺||Br⁻, CO₃²⁻

Для описания химического взаимодействия вначале необходимо рассмотреть основные реакции в смесях, отвечающих точкам пересечения стабильных и нестабильных секущих K₁, K₂, K₃. Пересечение стабильной NaBr-Li₂CO₃ и нестабильной диагоналей NaBr-Li₂CO₃ отвечает точке полной конверсии К (химическое взаимодействие описано выше). Пересечению стабильной диагонали NaBr-Li₂CO₃ и нестабильной секущей LiBr-D_и соответствует точка эквивалентности K₁. Пересечению стабильной секущей NaBr-D_и и нестабильной диагонали LiBr-Na₂CO₃ соответствует точка эквивалентности K₁.

$$\Delta_{r} H^{\circ}_{298}, \qquad \Delta_{r} G^{\circ}_{298}, \ \kappa Д \mathfrak{m} \qquad \kappa Д \mathfrak{m}$$

K:
$$2LiBr + Na_2CO_3 = 2NaBr + Li_2CO_3$$
 -106.5 -100.6 (2.2) K_1: $2LiBr + Li_2CO_3 \cdot Na_2CO_3 = 2NaBr + 2Li_2CO_3$ -106.5 -100.6 (2.3) K_2: $2LiBr + 2Na_2CO_3 = 2NaBr + Li_2CO_3 \cdot Na_2CO_3$ -106.5 -100.6 (2.4)

Исходя из данных термодинамического разбиения системы, строим древо фаз системы Li⁺,Na⁺||Br⁻,CO₃²⁻ (рис 2.4):

Рисунок 2.4 – Древо фаз системы Li⁺,Na⁺||Br⁻,CO₃²⁻

Метод ионного баланса, кроме основных реакций в системе, дает возможность описать химическое взаимодействие для любых исходных смесей от одного до пяти. Он позволяет определить состав смесей после расплавления и кристаллизации на основе древа фаз перебором симплексов и уравниванием коэффициентов в левой и правой частях уравнения. Рассмотрим различные варианты ионных взаимодействий исходных веществ в смесях.

Вариант 1. Исходная смесь солей включает 3LiBr+Na₂CO₃. Рассмотрим симплекс LiBr-NaBr-Li₂CO₃ и составим уравнения реакции в общем виде, правая часть которого содержит неопределенные коэффициенты *a*, *b*, *c*:

$$3\text{LiBr} + \text{Na}_2\text{CO}_3 = a\text{LiBr} + b\text{NaBr} + c\text{Li}_2\text{CO}_3$$
(2.5)

$$\begin{cases} a + 2c = \text{Li}^+ = 3\\ a + b = \text{Br}^- = 3\\ c = \text{CO}_3^{2^-} = 1 \end{cases} \qquad a = 1, b = 2, c = 1$$

Коэффициенты в правой части уравнения положительные, следовательно, выбранная исходная смесь после расплавления и кристаллизации попадает в выбранный симплекс. Уравнение запишем в виде брутто-реакции:

$$3\text{LiBr} + \text{Na}_2\text{CO}_3 = \text{LiBr} + 2\text{NaBr} + 3\text{Li}_2\text{CO}_3$$
 (2.6)
 $\Delta_r \text{H}^{\circ}_{298} = -106.5 \text{ кДж.}$
 $\Delta_r \text{G}^{\circ}_{298} = -100.6 \text{ кДж.}$

Приведенную брутто-реакцию можно привести в виде более простых реакций:

$$2\text{LiBr} + \text{Na}_2\text{CO}_3 = 2\text{NaBr} + 2\text{Li}_2\text{CO}_3$$
 (реакция обмена) (2.7)

$$3LiBr - 2LiBr = LiBr$$
 (растворение за счет
взаимодействия) (2.8)

Вариант 2. Исходные соли включают 2LiBr+3/2Na₂CO₃. Рассмотрим симплекс LiBr-NaBr-Li₂CO₃ и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты *a*, *b*, *c*:

$$2\text{LiBr} + 3/2\text{Na}_{2}\text{CO}_{3} = a\text{LiBr} + b\text{NaBr} + c\text{Li}_{2}\text{CO}_{3}$$
(2.9)
$$\begin{cases} a + 2c = \text{Li}^{+} = 2 \\ a + b = \text{Br}^{-} = 2 \\ c = \text{CO}_{3}^{2^{-}} = 3/2 \end{cases}$$
 $a = -1, b = 2, c = 3$

Один из коэффициентов уравнения имеет отрицательное значение, следовательно, конечная смесь не входит в выбранный симплекс.

Рассмотрим симплекс NaBr-Li₂CO₃-Li₂CO₃·Na₂CO₃.
2LiBr + 3/2Na₂CO₃ =
$$a$$
NaBr + b Li₂CO₃ + c (Li₂CO₃·Na₂CO₃) (2.10)

$$\begin{cases}
2b + 2c = \text{Li}^+ = 2 \\
a + 2c = \text{Na}^+ = 3 \\
a = \text{Br}^- = 2
\end{cases}$$
(2.10)

Коэффициенты в правой части уравнения положительные, следовательно, выбранная исходная смесь после расплавления и

кристаллизации попадает в выбранный симплекс. Уравнение запишем в виде брутто-реакции:

 $2\text{LiBr} + 3/2\text{Na}_2\text{CO}_3 = 2\text{NaBr} + 1/2\text{Li}_2\text{CO}_3 + 1/2(\text{Li}_2\text{CO}_3\cdot\text{Na}_2\text{CO}_3)$ (2.11) $\Delta_r H_{298}^\circ = -106.5 \text{ кДж.}$ $\Delta_r H_{298}^\circ = -100.6 \text{ кДж.}$

Приведенную брутто-реакцию можно привести в виде более простых реакци:

$$2\text{LiBr} + \text{Na}_2\text{CO}_3 = 2\text{NaBr} + \text{Li}_2\text{CO}_3$$
 (реакция обмена) (2.12)

$$1/2Na_2CO_3 + 1/2Li_2CO_3 = 1/2(Li_2CO_3 \cdot Na_2CO_3)$$
 (реакция
присоединения) (2.13)

Вариант 3. Исходная смесь из двух веществ 2LiBr+3Na₂CO₃. Рассмотрим симплекс NaBr-Na₂CO₃-Li₂CO₃•Na₂CO₃ и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты *a*, *b*, *c*:

$$2\operatorname{LiBr} + 3\operatorname{Na_2CO_3} = a\operatorname{NaBr} + b\operatorname{Na_2CO_3} + c(\operatorname{Li_2CO_3} \cdot \operatorname{Na_2CO_3})$$
(2.14)

$$\begin{cases} a + 2b + 2c = Na^{+} = 6\\ b + 2c = CO_{3}^{2-} = 3\\ a = Br^{-} = 2 \end{cases} \qquad a = 2, b = 1, c = 1$$

Коэффициенты в правой части уравнения положительные, следовательно выбранная исходная смесь после расплавления и кристаллизации попадает в выбранный симплекс. Уравнение запишем в виде брутто-реакции:

$$2\text{LiBr} + 3\text{Na}_{2}\text{CO}_{3} = 2\text{NaBr} + \text{Na}_{2}\text{CO}_{3} + (\text{Li}_{2}\text{CO}_{3} \cdot \text{Na}_{2}\text{CO}_{3})$$
(2.15)
$$\Delta_{r}\text{H}_{298}^{\circ} = -106.5$$

 $\Delta_{\rm r} {\rm G}^{\circ}_{298} = -100.6$ кДж.

Приведенную брутто-реакцию можно привести в виде более простых реакций:

$$2\text{LiBr} + 2\text{Na}_2\text{CO}_3 = 2\text{NaBr} + \text{Li}_2\text{CO}_3 \cdot \text{Na}_2\text{CO}_3$$
 (реакция обмена) (2.16)

$$3Na_2CO_3 - 2Na_2CO_3 = Na_2CO_3$$
 (растворение за счет взаимодействия) (2.17)

Вариант 4. Исходные соли включают три вещества 3LiBr+2Na₂CO₃+4NaBr. Рассмотрим симплекс LiBr-NaBr-Li₂CO₃ и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты *a*, *b*, *c*:

$$3\text{LiBr} + 2\text{Na}_2\text{CO}_3 + 4\text{NaBr} = a\text{LiBr} + b\text{NaBr} + c\text{Li}_2\text{CO}_3 \qquad (2.18)$$

$$\begin{cases} a + 2c = \text{L}i^+ = 3\\ a + b = \text{Br}^- = 7\\ c = \text{CO}_3^{2^-} = 2 \end{cases}$$

$$a = -1, b = 8, c = 2$$

Один из коэффициентов уравнения имеет отрицательное значение, следовательно, конечная смесь не входит в выбранный симплекс.

Рассмотрим симплекс NaBr-Li₂CO₃-Li₂CO₃·Na₂CO₃. 3LiBr + 2Na₂CO₃ + 4NaBr = aNaBr + bLi₂CO₃ + c(Li₂CO₃·Na₂CO₃) (2.19) $\begin{cases}
a + 2c = Na^{+} = 8 \\
2d + 2c = Li^{+} = 3 \\
a = Br^{-} = 7
\end{cases}$

Коэффициенты в правой части уравнения положительные, следовательно выбранная исходная смесь после расплавления и кристаллизации попадает в выбранный симплекс. Уравнение запишем в виде брутто-реакции:

 $3\text{LiBr} + 2\text{Na}_2\text{CO}_3 + 4\text{NaBr} = 7\text{NaBr} + \text{Li}_2\text{CO}_3 + 1/2(\text{Li}_2\text{CO}_3 \cdot \text{Na}_2\text{CO}_3)$ (2.20) $\Delta_r \text{H}^{\circ}_{298} = -159.8 \text{ кДж.}$ $\Delta_r \text{G}^{\circ}_{298} = -150.9 \text{ кДж.}$

Приведенную брутто-реакцию можно привести в виде более простых реакций:

$LiBr + Na_2CO_3 = NaBr + 1/2(Li_2CO_3 \cdot Na_2CO_3)$	(реакция обмена)	(2.21)
$2LiBr + Na_2CO_3 = Li_2CO_3 + 2NaBr$	(реакция обмена)	(2.22)
3NaBr + 4NaBr = 7NaBr	(накопление за счет взаимодействия)	(2.23)

Вариант 5. Исходные соли трех веществ ИЗ 3LiBr+3Na₂CO₃+Li₂CO₃·Na₂CO₃. Рассмотрим симплекс LiBr-NaBr-Li₂CO₃ и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты *a*, *b*, *c*:

$$3\text{LiBr} + 2\text{Na}_2\text{CO}_3 + 4\text{NaBr} = a\text{NaBr} + b\text{Li}_2\text{CO}_3 + c(\text{Li}_2\text{CO}_3 \cdot \text{Na}_2\text{CO}_3) \quad (2.24)$$
$$\begin{cases} a + 2c = \text{Li}^+ = 5\\ a + b = \text{Br}^- = 3\\ b = \text{Na}^+ = 8 \end{cases} \quad a = -5, \ b = 8, \ c = 5\\ b = \text{Na}^+ = 8 \end{cases}$$

Один из коэффициентов уравнения имеет отрицательное значение, следовательно, конечная смесь не входит в выбранный симплекс.

Рассмотрим симплекс NaBr-Li₂CO₃-Li₂CO₃·Na₂CO₃.

 $3\text{LiBr} + 3\text{Na}_2\text{CO}_3 + \text{Li}_2\text{CO}_3\cdot\text{Na}_2\text{CO}_3 = a\text{NaBr} + b\text{Li}_2\text{CO}_3 + c(\text{Li}_2\text{CO}_3\cdot\text{Na}_2\text{CO}_3)$ (2.25)

$$\begin{cases} 2b + 2c = \text{Li}^+ = 5\\ a + 2c = \text{Na}^+ = 8\\ a = \text{Br}^- = 3 \end{cases} \qquad a = 3, b = 0, c = 5/2$$

Один из коэффициентов уравнения оказался равен нулю, это указывает на тот факт, что конечный состав после расплавления и кристаллизации находится на стабильной секущей NaBr-Li₂CO₃·Na₂CO₃. Уравнение запишем в виде брутто-реакции:

 $3\text{LiBr} + 3\text{Na}_2\text{CO}_3 + \text{Li}_2\text{CO}_3 \cdot \text{Na}_2\text{CO}_3 = 3\text{NaBr} + 5/2(\text{Li}_2\text{CO}_3 \cdot \text{Na}_2\text{CO}_3)$ (2.26) $\Delta_r H_{298}^\circ = -159.8 \text{ кДж}.$

 $\Delta_{\rm r} {\rm G}^{\circ}_{298} =$ -150.9 кДж.

Приведенную брутто-реакцию можно привести в виде:

$$3LiBr + 3Na_2CO_3 = 3NaBr + 3/2(Li_2CO_3 \cdot Na_2CO_3)$$
 (реакция обмена) (2.27)

$$Li_2CO_3 \cdot Na_2CO_3 + 3/2(Li_2CO_3 \cdot Na_2CO_3) =$$
(накопление за счет
=5/2(Li_2CO_3 \cdot Na_2CO_3) Взаимодействия) (2.28)

Вариант 6. Исходная смесь включает четыре вещества 3LiBr+2NaBr+5Li₂CO₃+4Na₂CO₃. Рассмотрим симплекс LiBr-NaBr-Li₂CO₃ и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты *a*, *b*, *c*:

 $3\text{LiBr} + 2\text{NaBr} + 5\text{Li}_2\text{CO}_3 + 4\text{Na}_2\text{CO}_3 = c\text{LiBr} + b\text{NaBr} + c\text{Li}_2\text{CO}_3 \quad (2.29)$

$$\begin{cases} a + 2c = \text{Li}^+ = 13 \\ a + b = \text{Br}^- = 5 \\ a = \text{Na}^+ = 10 \end{cases} \qquad a = -5, b = 10, c = 9$$

Один из коэффициентов уравнения имеет отрицательное значение, следовательно, конечная смесь не входит в выбранный симплекс.

Рассмотрим симплекс NaBr-Li₂CO₃-Li₂CO₃·Na₂CO₃.

 $3\text{LiBr} + 2\text{NaBr} + 5\text{Li}_2\text{CO}_3 + 4\text{Na}_2\text{CO}_3 = a\text{NaBr} + b\text{Li}_2\text{CO}_3 + c(\text{Li}_2\text{CO}_3\cdot\text{Na}_2\text{CO}_3)$ (2.30)

$$a + 2c = Na^{+} = 10$$

 $2b + 2c = Li^{+} = 13$
 $b = Br^{-} = 5$
 $a = 5, b = 4, c = 5/2$

Коэффициенты в правой части уравнения положительные, следовательно, выбранная исходная смесь после расплавления и кристаллизации попадает в выбранный симплекс. Уравнение запишем в виде брутто-реакции:

 $3\text{LiBr} + 2\text{NaBr} + 5\text{Li}_2\text{CO}_3 + 4\text{Na}_2\text{CO}_3 = 5\text{NaBr} + 4\text{Li}_2\text{CO}_3 + 5/2(\text{Li}_2\text{CO}_3\cdot\text{Na}_2\text{CO}_3)$ (2.31) $\Delta_r H_{298}^\circ = -159.8 \text{ кДж.}$ $\Delta_r G_{298}^\circ = -150.9 \text{ кДж.}$

Приведенную брутто-реакцию можно привести в виде более простых реакций:

$$2\text{LiBr} + 3/2\text{Na}_2\text{CO}_3 = 3/2 \text{Li}_2\text{CO}_3 + 3\text{NaBr} \qquad (\text{реакция обмена}) \qquad (2.32)$$

2NaBr + 3NaBr = 5NaBr
$$(\text{накопление за счет} \\ \text{взаимодействия}) \qquad (2.33)$$

3/2Li₂CO₃ + 5/2Li₂CO₃ = 4Li₂CO₃
$$(\text{накопление за счет} \\ \text{взаимодействия}) \qquad (2.34)$$

$$5/2Na_2CO_3 + 5/2Li_2CO_3 =$$
 (накопление за счет
 $5/2(Li_2CO_3 \cdot Na_2CO_3)$ взаимодействия) (2.35)

Вариант 7. Исходные вещества включают пять солей 2LiBr+2NaBr+3Li₂CO₃+Na₂CO₃+Li₂CO₃·Na₂CO₃. Рассмотрим симплекс LiBr-NaBr-Li₂CO₃ и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты *a*, *b*, *c*:

 $2\text{LiBr} + 2\text{NaBr} + 3\text{Li}_2\text{CO}_3 + \text{Na}_2\text{CO}_3 + \text{Li}_2\text{CO}_3 \bullet \text{Na}_2\text{CO}_3 = c\text{LiBr} + b\text{NaBr} + c\text{Li}_2\text{CO}_3$ (2.36)

 $\begin{cases} b + 2c = \text{Li}^+ = 8\\ a + b = \text{Br}^- = 4\\ a = \text{Na}^+ = 6 \end{cases} \qquad a = 6, b = -2, c = 5$

Один из коэффициентов уравнения имеет отрицательное значение, следовательно, конечная смесь не входит в выбранный симплекс.

Рассмотрим симплекс NaBr-Li₂CO₃-Li₂CO₃·Na₂CO₃.

 $2\text{LiBr} + 2\text{NaBr} + 3\text{Li}_2\text{CO}_3 + \text{Na}_2\text{CO}_3 + \text{Li}_2\text{CO}_3 \cdot \text{Na}_2\text{CO}_3 = a\text{NaBr} + b\text{Li}_2\text{CO}_3$ $+ +c(\text{Li}_2\text{CO}_3 \cdot \text{Na}_2\text{CO}_3)$ (2.37)

$$\begin{cases} a + 2c = Na^{+} = 6\\ 2b + 2c = Li^{+} = 10\\ a = Br^{-} = 4 \end{cases} \qquad a = 4, b = 4, c = 1$$

Коэффициенты уравнения положительные в правой части уравнения положительные, следовательно, выбранная исходная смесь после расплавления и кристаллизации попадает в выбранный симплекс. Уравнение запишем в виде брутто-реакции:

 $2LiBr + 2NaBr + 3Li_2CO_3 + Na_2CO_3 + Li_2CO_3 \cdot Na_2CO_3 = 4NaBr + 4Li_2CO_3 + Li_2CO_3 \cdot Na_2CO_3$ (2.38)

$$\Delta_{\rm r} {\rm H}_{298}^{\circ} = -106.5$$
 кДж.

 $\Delta_{\rm r} {\rm G}_{298}^{\circ} =$ -100.6 кДж.

Приведенную брутто-реакцию можно привести в виде более простых: $2LiBr + Na_2CO_3 = 2NaBr + Li_2CO_3$ (реакция обмена) (2.39) 2NaBr + 2NaBr = 4NaBr (накопление за счет (2.40)

взаимодействия)

 $3Li_2CO_3 + Li_2CO_3 = 4Li_2CO_3$

2.3. Моделирование ликвидуса системы Li⁺,Na⁺||Br⁻,CO₃²⁻

Система Li⁺,Na⁺||Br⁻,CO₃²⁻ образована двумя эвтектическими системами LiBr-Li₂CO₃ и NaBr-Na₂CO₃, одной системой с непрерывными рядами твердых растворов с минимумом LiBr-NaBr, а также системой Li₂CO₃-Na₂CO₃с наличием соединения инконгруэнтного типа плавления с эвтектикой и перитектикой. Возможны следующие варианты модели ликвидусов (рис 2.5):

Рисунок 2.5 – Варианты моделей ликвидуса тройной взаимной системы Li⁺,Na⁺||Br⁻,CO3²⁻

Вариант 1. В симплексе LiBr-NaBr-Li₂CO₃ на кривой моновариантного равновесия, соединяющей двухкомпонентные эвтектики, наблюдается

36
отсутствие минимальных точек. В симплексе NaBr-D_и-Na₂CO₃ наблюдается образование тройной эвтектики и тройной перитектики.

Вариант 2. Так как на стороне LiBr-NaBr существуют непрерывные ряды твердых растворов с минимальной точкой плавления, в симплексе LiBrмоновариантного NaBr-Li₂CO₃ на кривой равновесия, соединяющей двухкомпонентные эвтектики, образуется смесь с минимальной плавления. симплексе NaBr-D₂-Na₂CO₃ наблюдается температурой В образование тройной эвтектики и тройной перитектики.

Вариант 3. В случае распада твердых растворов NaCl_xBr_{1 – x} внутри симплекса LiBr-NaBr-Li₂CO₃ возможен разрыв сплошности твердых растворов с образованием трехкомпонентной эвтектики. В симплексе NaBr-D₂-Na₂CO₃ наблюдается образование тройной эвтектики и тройной перитектики.

Вариант 4. В симплексе LiBr-NaBr-Li₂CO₃ на кривой моновариантного равновесия, соединяющей двухкомпонентные эвтектики, наблюдается отсутствие минимальных точек. В симплексе NaBr-D₂-Li₂CO₃ наблюдается образование трехкомпонентной перитектики. В симплексе NaBr-D_и-Na₂CO₃ наблюдается образование трехкомпонентной эвтектики.

Вариант 5. Так как на стороне LiBr-NaBr существуют непрерывные ряды твердых растворов с минимальной точкой плавления, в симплексе LiBr-NaBr-Li₂CO₃ на моновариантного кривой равновесия, соединяющей образуется двухкомпонентные эвтектики, смесь с минимальной плавления. В симплексе NaBr-D_И-Li₂CO₃ наблюдается температурой образование трехкомпонентной перитектики. В симплексе NaBr-D_И-Na₂CO₃ наблюдается образование трехкомпонентной эвтектики.

Вариант 6. В случае распада твердых растворов NaCl_xBr_{1 – х} внутри симплекса LiBr-NaBr-Li₂CO₃ возможен разрыв сплошности твердых растворов с образованием трехкомпонентной эвтектики. В симплексе NaBr-D_и-Li₂CO₃ наблюдается образование трехкомпонентной перитектики. В

симплексе NaBr-D_и-Na₂CO₃ наблюдается образование трехкомпонентной эвтектики.

Вариант 7. В симплексе LiBr-NaBr-Li₂CO₃ на кривой моновариантного равновесия, соединяющей двухкомпонентные эвтектики, наблюдается отсутствие минимальных точек. В симплексе NaBr-D_и-Na₂CO₃ наблюдается образование трехкомпонентной эвтектики и точки выклинивания.

Вариант 8. Так как на стороне LiBr-NaBr существуют непрерывные ряды твердых растворов с минимальной точкой плавления, в симплексе LiBr-NaBr-Li₂CO₃ на кривой моновариантного равновесия, соединяющей образуется двухкомпонентные эвтектики, смесь С минимальной температурой плавления. В симплексе NaBr-D_И-Na₂CO₃ наблюдается образование трехкомпонентной эвтектики и точки выклинивания.

Вариант 9. В случае распада твердых растворов NaCl_xBr_{1 – х} внутри симплекса LiBr-NaBr-Li₂CO₃ возможен разрыв сплошности твердых растворов с образованием трехкомпонентной эвтектики. В симплексе NaBr-D_и-Na₂CO₃ наблюдается образование трехкомпонентной эвтектики и точки выклинивания.

2.4. Трехкомпонентная взаимная системы Cs⁺,Li⁺||Br⁻,CO₃²⁻

На рис. 2.6. приведены варианты геометрического разбиения тройной взаимной системы $Li^+, Cs^+ ||Br^-, CO_3^{2-}$ на симплексы. На противоположных гранях CsBr-LiBr образуются соединение инконгруэнтного типа плавления D_{U1} состава CsBr·LiBr, а стороне Cs₂CO₃-Li₂CO₃ образуется соединение конгруэнтного типа плавления D_K состава Cs₂CO₃•Li₂CO₃.

Для определения реально существующего варианта разбиения взаимной системы используется расчет термодинамических параметров реакций ионного обмена:

$$2\text{LiBr} + \text{Cs}_2\text{CO}_3 = 2\text{CsBr} + \text{Li}_2\text{CO}_3 \tag{2.42}$$

$$\Delta_{r}H_{298}^{o} = ((2\Delta_{f}H_{298}^{o}CsBr) + \Delta_{f}H_{298}^{o}Li_{2}CO_{3}) - ((2\Delta_{f}H_{298}^{o}LiBr)) + (\Delta_{f}H_{298}^{o}Cs_{2}CO_{3}))$$

$$\Delta_{\rm r} {\rm H}^{\rm o}_{298} = \left(\left(2(-405.5) \right) + (-1215.5) \right) - \left(\left(2(-351.0) \right) + (-1136.4) \right) = 0.188,1$$
кДж.

$$\Delta_{\rm r}G_{298}^{\rm o} = \left((2\Delta_{\rm f}G_{298}^{\rm o}CsBr) + \Delta_{\rm f}G_{298}^{\rm o}Li_2CO_3 \right) - \left((2\Delta_{\rm f}G_{298}^{\rm o}LiBr) \right) + \left(\Delta_{\rm f}G_{298}^{\rm o}Cs_2CO_3 \right) \right)$$

$$\Delta_{\rm r} {\rm G}^{\rm o} = \left(\left(2 \left(-391.1 \right) \right) + \left(-1131.5 \right) \right) - \left(\left(2 \left(-341.7 \right) \right) + \left(-1053.0 \right) \right) = 0$$

Рисунок 2.6 – Геометрические варианты разбиения тройной взаимной системы Li⁺,Cs⁺||Br⁻,CO₃²⁻

На основании термодинамического расчета наиболее вероятным вариантом является следующее разбиение (рис. 2.7), включающее в качестве стабильной диагональ CsBr-Li₂CO₃, и стабильные секущие CsBr-D_K, D_{и1} -Li₂CO₃. Рассмотрим основные реакции взаимодействия в смесях, отвечающих точкам эквивалентности. Стабильная диагональ CsBr-Li₂CO₃ с нестабильной диагональю LiBr-Cs₂CO₃ пересекается в точке конверсии К. Пересечения стабильной диагонали CsBr-Li₂CO₃ с нестабильными секущими D_{и1}-Cs₂CO₃ и LiBr-D_K происходит в точках эквивалентности K₂, K₅. Стабильная секущая CsBr-D_K пересекается с нестабильной секущей D_{и1}- Cs_2CO_3 в точке эквивалентности K_6 и с нестабильной диагональю LiBr- Cs_2CO_3 в точке эквивалентности K_1 . Пересечение стабильной диагонали D_{u_1} -Li₂CO₃ с нестабильной секущей LiBr- D_K в точке эквивалентности K_3 и с нестабильной диагональю LiBr-Cs₂CO₃ в точке эквивалентности K_4 .

Рисунок 2.7– Разбиение тройной взаимной системы Li⁺,Cs⁺||Br⁻,CO₃²⁻

		Δ _r H [°] 298, кДж.	Δ _r G [°] 29 _{8,} кДж.	
К	$2LiBr + Cs_2CO_3 = 2CsBr + Li_2CO_3$	-188.1	-177.3	(2.43)
К1	$2CsBr + Li_2CO_3 \cdot Cs_2CO_3 = 2LiBr + Cs_2CO_3$	-188.1	-177.3	(44)
К2	$2CsBr + Li_2CO_3 = 2LiBr + Li_2CO_3 \cdot Cs_2CO_3$	-188.1	-177.3	(45)
К3	$2\text{LiBr} + (\text{Li}_2\text{CO}_3 \cdot \text{Cs}_2\text{CO}_3) = 2(\text{CsBr} \cdot \text{LiBr}) + 2\text{Li}_2\text{CO}_3$	-188.1	-177.3	(46)
К4	$4LiBr + Cs_2CO_3 = 2(CsBr \cdot LiBr) + Li_2CO_3$	-188.1	-177.3	(47)
К5	$2(CsBr \cdot LiBr) + Cs_2CO_3 = 4CsBr + Li_2CO_3$	-188.1	-177.3	(48)
K ₆	$2(CsBr \cdot LiBr) + 2Cs_2CO_3 = 4CsBr + Li_2CO_3 \cdot Cs_2CO_3$	-188.1	-177.3	(2.49)

Исходя из данных термодинамического разбиения системы, строим древо фаз системы Li⁺,Cs⁺||Br⁻,CO₃²⁻ (рис 2.8).

Метод ионного баланса позволяет определить состав любой исходной смеси после ее расплавления и кристаллизации. Рассмотрим различные варианты ионных взаимодействий исходных веществ в смесях.

Рисунок 2.8 – Древо фаз системы Li⁺,Cs⁺||Br⁻,CO₃²⁻

Вариант 1. Исходная смесь из двух веществ $4\text{LiBr}+\text{Cs}_2\text{CO}_3$. Рассмотрим симплекс LiBr-Li₂CO₃-CsBr·LiBr и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты *a*, *b*, *c*:

4LiBr + Cs₂CO₃ = *a*LiBr + *b*Li₂CO₃ + *c*(CsBr·LiBr) (2.50)

$$\begin{cases}
a + 2b + c = Li^{+} = 4 \\
a + 2c = Br^{-} = 4 \\
b = CO_{3}^{2^{-}} = 1
\end{cases}$$
(2.50)

Один из коэффициентов уравнения оказался равен нулю, это указывает на тот факт, что конечный состав после расплавления и кристаллизации находится на стабильной секущей CsBr·LiBr-Li₂CO₃. Уравнение реакции запишем в виде:

$$4\text{LiBr} + \text{Cs}_2\text{CO}_3 = \text{Li}_2\text{CO}_3 + 2(\text{CsBr}\cdot\text{LiBr})$$
(2.51)

∆_rH^o₂₉₈ = -188.1 кДж

 $\Delta_{\rm r} {\rm G}^{\rm o}_{298} =$ -177.3 кДж

Вариант 2. Исходные соли $2\text{LiBr}+3\text{CsBr}+2\text{Cs}_2\text{CO}_3$. Рассмотрим симплекс LiBr-Li₂CO₃-CsBr·LiBr и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты *a*, *b*, *c*:

$$2\text{LiBr} + 3\text{CsBr} + 2\text{Cs}_2\text{CO}_3 = a\text{LiBr} + b\text{Li}_2\text{CO}_3 + c(\text{CsBr}\cdot\text{LiBr})$$
(2.52)

$$\begin{cases} a + 2b + c = \text{Li}^+ = 2\\ a + 2c = \text{Br}^- = 5\\ c = \text{Cs}^+ = 7 \end{cases} \qquad a = -27, b = 17, c = 7$$

Один из коэффициентов уравнения имеет отрицательное значение, следовательно, конечная смесь не входит в выбранный симплекс.

Рассмотрим симплекс CsBr-Li₂CO₃-CsBr·LiBr и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты a, b, c:

$$2\text{LiBr} + 3\text{CsBr} + 2\text{Cs}_2\text{CO}_3 = a\text{CsBr} + b\text{Li}_2\text{CO}_3 + c(\text{CsBr}\cdot\text{LiBr})$$
(2.53)
$$\begin{cases} a + c = \text{Cs}^+ = 7\\ 2b + c = \text{Li}^+ = 2\\ c = \text{CO}_3^{2^-} = 2 \end{cases}$$
 $a = 9, b = 2, c = -2$

Один из коэффициентов уравнения имеет отрицательное значение, следовательно, конечная смесь не входит в выбранный симплекс.

Рассмотрим симплекс $CsBr-Li_2CO_3-Li_2CO_3\cdot Cs_2CO_3$ и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты *a*, *b*, *c*:

$$2\text{LiBr} + 3\text{CsBr} + 2\text{Cs}_2\text{CO}_3 = a\text{CsBr} + b\text{Li}_2\text{CO}_3 + c(\text{Li}_2\text{CO}_3 \cdot \text{Cs}_2\text{CO}_3) \quad (2.54)$$

$$\begin{cases} a + 2c = \text{Cs}^+ = 7\\ 2b + 2c = \text{Li}^+ = 2\\ c = \text{Br}^- = 5 \end{cases} \quad a = 5, \ b = 0, \ c = 1 \end{cases}$$

Один из коэффициентов уравнения равен нулю, поэтому, конечная смесь после расплавления и кристаллизации принадлежит диагонали CsBr-Li₂CO₃·Cs₂CO₃. Уравнение запишем в виде брутто-реакции:

$$2\text{LiBr} + 3\text{CsBr} + 2\text{Cs}_2\text{CO}_3 = 5\text{CsBr} + \text{Li}_2\text{CO}_3 \cdot \text{Cs}_2\text{CO}_3$$
 (2.55)
 $\Delta_r\text{H}^0_{298} = -188.1 \text{ кДж}$
 $\Delta_r\text{G}^0_{298} = -177.3 \text{ кДж}$

Приведенную брутто-реакцию можно привести в виде более простых:

$$2\text{LiBr} + 2\text{Cs}_2\text{CO}_3 = 2\text{CsBr} + \text{Li}_2\text{CO}_3 \cdot \text{Cs}_2\text{CO}_3 \qquad (\text{реакция обмена}) \qquad (2.56)$$
$$2\text{CsBr} + 3\text{CsBr} = 5\text{CsBr} \qquad (\text{накопление за счет} \qquad (2.57)$$

взаимодействия)

Вариант 3. Исходные соли $2\text{LiBr}+2(\text{Li}_2\text{CO}_3\cdot\text{Cs}_2\text{CO}_3)+\text{Li}_2\text{CO}_3$. Рассмотрим симплекс CsBr-Li₂CO₃-Li₂CO₃·Cs₂CO₃ и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты *a*, *b*, *c*:

 $2\text{LiBr} + 2(\text{Li}_2\text{CO}_3 \cdot \text{Cs}_2\text{CO}_3) + \text{Li}_2\text{CO}_3 = a\text{CsBr} + b\text{Li}_2\text{CO}_3 + c(\text{Li}_2\text{CO}_3 \cdot \text{Cs}_2\text{CO}_3)$ (2.58)

$$\begin{cases} 2b + 2c = \text{Li}^+ = 8\\ a + 2c = \text{Cs}^+ = 4\\ c = \text{Br}^- = 2 \end{cases} \qquad a = 2, b = 3, c = 1$$

Коэффициенты уравнения положительные в правой части уравнения положительные, то есть выбранная исходная смесь после расплавления и кристаллизации попадает в выбранный симплекс. Уравнение запишем в виде брутто-реакции:

2LiBr + 2(Li₂CO₃·Cs₂CO₃) + Li₂CO₃ = 2CsBr + 3Li₂CO₃ + Li₂CO₃·Cs₂CO₃ (2.59) $\Delta_{\rm r} {\rm H}^{\circ}_{298} = -188.1 \,$ кДж. $\Delta_{\rm r} {\rm G}^{\rm o}_{298} = -177.3 \,$ кДж

Приведенную брутто-реакцию можно привести в виде более простых: $2LiBr + Li_2CO_3 \cdot Cs_2CO_3 = 2CsBr + 2Li_2CO_3$ (реакция обмена) (2.60) $2(Li_2CO_3 \cdot Cs_2CO_3) - Li_2CO_3 \cdot Cs_2CO_3 =$ (растворение за счет $=Li_2CO_3 \cdot Cs_2CO_3$ (2.61) (накопление за счет (2.61)

$$Li_2CO_3 + 2Li_2CO_3 = 3Li_2CO_3$$
 (2.62)
взаимодействия)

Вариант 4. Исходные соли $Cs_2CO_3+3(LiBr\cdot CsBr)+Li_2CO_3\cdot Cs_2CO_3$. Рассмотрим симплекс CsBr-LiBr·CsBr-Li₂CO₃ и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты *a*, *b*, *c*:

 $Cs_2CO_3 + 3(LiBr \cdot CsBr) + Li_2CO_3 \cdot Cs_2CO_3 = aCsBr + b(LiBr \cdot CsBr) + cLi_2CO_3$ (2.63)

$$\begin{cases} a + b = Cs^{+} = 7\\ a + 2b = Br^{-} = 6\\ 2c = Li^{+} = 5 \end{cases} \qquad a = 8, b = -1, c = 5/2$$

Один из коэффициентов уравнения имеет отрицательное значение, следовательно, конечная смесь не входит в выбранный симплекс.

Рассмотрим симплекс LiBr-Li₂CO₃-LiBr·CsBr и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты a, b, c:

 $Cs_2CO_3 + 3(LiBr \cdot CsBr) + Li_2CO_3 \cdot Cs_2CO_3 = aLiBr + bLi_2CO_3 + c(LiBr \cdot CsBr)$ (2.64)

$$\begin{cases} a + 2b + c = \text{Li}^+ = 5\\ a + c = \text{Br}^- = 6\\ 2c = \text{Cs}^+ = 7 \end{cases} \qquad a = 8, b = -1, c = 5/2$$

Один из коэффициентов уравнения имеет отрицательное значение, поэтому, конечная смесь не входит в выбранный симплекс.

Рассмотрим симплекс CsBr-Li₂CO₃-Li₂CO₃·Cs₂CO₃ и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты a, b, c:

 $Cs_2CO_3 + 3(LiBr \cdot CsBr) + Li_2CO_3 \cdot Cs_2CO_3 = aCsBr + bLi_2CO_3 + c(Li_2CO_3 \cdot Cs_2CO_3)$ (2.65)

$$\begin{cases} 2b + 2c = \text{Li}^+ = 5\\ a + 2c = \text{Cs}^+ = 7\\ a = \text{Br}^- = 6 \end{cases} \qquad a = 6, b = 2, c = 1/2$$

Коэффициенты уравнения положительные в правой части уравнения положительные, поэтому, выбранная исходная смесь после расплавления и кристаллизации попадает в выбранный симплекс. Уравнение запишем в виде брутто-реакции:

 $Cs_2CO_3 + 3(LiBr \cdot CsBr) + Li_2CO_3 \cdot Cs_2CO_3 = 6CsBr + 2Li_2CO_3 + 1/2 (Li_2CO_3 \cdot Cs_2CO_3)$ (2.66)

 $\Delta_{\rm r} {\rm H}^{\circ}_{298} = -188.1$ кДж. $\Delta_{\rm r} {\rm G}^{\circ}_{298} = -177.3$ кДж.

Приведенную брутто-реакцию можно привести в виде:

$Cs_2CO_3 + 2(LiBr \cdot CsBr) = 4CsBr + Li_2CO_3$	(реакция обмена)	(2.67)
$Li_2CO_3 \cdot Cs_2CO_3 - 1/2 (Li_2CO_3 \cdot Cs_2CO_3) = 1/2$ ($Li_2CO_3 \cdot Cs_2CO_3$)	(растворение за счет взаимодействия)	(2.68)
$\text{LiBr} \cdot \text{CsBr} + \frac{1}{2} (\text{Li}_2\text{CO}_3 \cdot \text{Cs}_2\text{CO}_3) = 2\text{CsBr} + \frac{1}{2}$		

 $Libi CSBI + 1/2 (Li_2CO_3 CS_2CO_3) = 2CSBI + (реакция обмена) (2.69)$

Вариант 5. Исходные соли Cs₂CO₃+2Li₂CO₃+2CsBr+2(LiBr•CsBr). Рассмотрим симплекс LiBr-Li₂CO₃-LiBr•CsBr и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты *a*, *b*, *c*:

 $Cs_2CO_3 + 2Li_2CO_3 + 2CsBr + 2(LiBr \cdot CsBr) = aLiBr + bLi_2CO_3 + c(LiBr \cdot CsBr)$ (2.70)

$$\begin{cases} a + 2b + c = \text{Li}^+ = 6\\ a + 2c = \text{Br}^- = 6\\ c = \text{Cs}^+ = 6 \end{cases} \qquad a = -6, b = 3, c = 6$$

Один из коэффициентов уравнения имеет отрицательное значение, следовательно, конечная смесь не входит в выбранный симплекс.

Рассмотрим симплекс CsBr-Li₂CO₃-LiBr·CsBr и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты a, b, c:

 $Cs_2CO_3 + 2Li_2CO_3 + 2CsBr + 2(LiBr \cdot CsBr) = aCsBr + bLi_2CO_3 + c(LiBr \cdot CsBr)$ (2.71)

 $\begin{cases} a + c = Cs^{+} = 6\\ 2b + c = Li^{+} = 6\\ c = CO_{3}^{2^{-}} = 3 \end{cases} \qquad a = 6, b = 3, c = 0$

Один из коэффициентов уравнения равен нулю, следовательно, конечная смесь принадлежит диагонали CsBr-Li₂CO₃. Уравнение бруттореакции запишем в виде: $Cs_2CO_3 + 2Li_2CO_3 + 2CsBr + 2(LiBr \cdot CsBr) = 6CsBr + 3Li_2CO_3$ (2.72) $\Delta_r H_{298}^{\circ} = -188.1 \text{ кДж.}$ $\Delta_r G_{298}^{\circ} = -177.3 \text{ кДж.}$

Приведенную брутто-реакцию можно привести в виде более простых:

$$Cs_{2}CO_{3} + 2(LiBr \cdot CsBr) = 4CsBr + Li_{2}CO_{3}$$
(реакция обмена) (2.73)

$$2Li_{2}CO_{3} + Li_{2}CO_{3} = 3Li_{2}CO_{3}$$
(накопление за счет
взаимодействия) (2.74)

$$2CsBr + 4CsBr = 6CsBr$$
(2.75)

Вариант 6. Исходные соли 2LiBr+3CsBr+Cs₂CO₃+Li₂CO₃. Рассмотрим симплекс LiBr-Li₂CO₃-LiBr•CsBr и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты *a*, *b*, *c*:

2LiBr + 3 CsBr + Cs₂CO₃ + Li₂CO₃ = *a*LiBr + *b*Li₂CO₃ + *c*(LiBr·CsBr) (2.76)

$$\begin{cases}
a + 2b + c = \text{Li}^{+} = 4 \\
a + 2c = \text{Br}^{-} = 5 \\
b = \text{CO}_{3}^{2^{-}} = 2
\end{cases}$$
a = -5, *b* = 2, *c* = 5

Один из коэффициентов уравнения имеет отрицательное значение, следовательно конечная смесь не входит в выбранный симплекс.

Рассмотрим симплекс CsBr-Li₂CO₃-LiBr·CsBr и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты a, b, c:

$$2\text{LiBr} + 3 \text{ CsBr} + \text{Cs}_2\text{CO}_3 + \text{Li}_2\text{CO}_3 = a\text{CsBr} + b\text{Li}_2\text{CO}_3 + c(\text{LiBr}\cdot\text{CsBr}) (2.77)$$

$$\begin{cases} a + c = \text{Cs}^+ = 5\\ 2b + c = \text{Li}^+ = 4\\ b = \text{CO}_3^{2^-} = 2 \end{cases} \qquad a = 5, b = 2, c = 0$$

Один из коэффициентов уравнения равен нулю, то есть конечная смесь принадлежит диагонали CsBr-Li₂CO₃. Уравнение брутто-реакции запишем в виде:

$$2LiBr + 3CsBr + Cs_2CO_3 + Li_2CO_3 = 5CsBr + 2Li_2CO_3$$
(2.78)

 $\Delta_{\rm r} {\rm H}^{\circ}_{298} = -188.1$ кДж. $\Delta_{\rm r} {\rm G}^{\circ}_{298} = -177.3$ кДж.

Приведенную брутто-реакцию можно привести в виде более простых:

$$2\text{LiBr} + \text{Cs}_2\text{CO}_3 = 2\text{CsBr} + \text{Li}_2\text{CO}_3 \qquad (\text{реакция обмена}) \qquad (2.79)$$

$$3\text{CsBr} + 2\text{CsBr} = 5\text{CsBr} \qquad \qquad (\text{накопление за счет} \\ \text{взаимодействия}) \qquad (2.80)$$

$$(\text{накопление за счет} \\ \text{(накопление за счет} \\ \text{(2.81)}$$

$$Li_2CO_3 + Li_2CO_3 = 2Li_2CO_3$$
 (1акопление за счет
взаимодействия) (2.81)

Вариант 7. Исходные соли $3Cs_2CO_3+Li_2CO_3+2LiBr+Li_2CO_3\cdot Cs_2CO_3$. Рассмотрим симплекс LiBr-Li₂CO₃-LiBr·CsBr и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты *a*, *b*, *c*:

 $3Cs_2CO_3 + Li_2CO_3 + 2LiBr + Li_2CO_3 \cdot Cs_2CO_3 = aLiBr + bLi_2CO_3 + c(LiBr \cdot CsBr)$ (2.82)

$$\begin{cases} a + 2b + c = \text{Li}^+ = 6\\ a + 2c = \text{Br}^- = 2\\ b = \text{Cs}^+ = 8 \end{cases} \qquad a = -14, b = 6, c = 8$$

Один из коэффициентов уравнения имеет отрицательное значение, следовательно, конечная смесь не входит в выбранный симплекс.

Рассмотрим симплекс CsBr-Li₂CO₃-LiBr·CsBr и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты a, b, c:

 $3Cs_2CO_3 + Li_2CO_3 + 2LiBr + Li_2CO_3 \cdot Cs_2CO_3 = aCsBr + bLi_2CO_3 + c(LiBr \cdot CsBr)$ (2.83)

$$\begin{cases} 2b + c = \text{Li}^+ = 6\\ a + c = \text{Cs}^+ = 2\\ b = \text{CO}_3^{2-} = 6 \end{cases} \qquad a = 8, b = 6, c = -6$$

Один из коэффициентов уравнения имеет отрицательное значение, следовательно конечная смесь не входит в выбранный симплекс.

Рассмотрим симплекс CsBr-Li₂CO₃-(Li₂CO₃·Cs₂CO₃) и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты a, b, c:

 $3Cs_2CO_3 + Li_2CO_3 + 2LiBr + Li_2CO_3 \cdot Cs_2CO_3 = aCsBr + bLi_2CO_3 + c(Li_2CO_3 \cdot Cs_2CO_3)$ (2.84)

$$\begin{cases} a + 2c = Cs^{+} = 8\\ 2b + 2c = Li^{+} = 6\\ b = Br^{-} = 2 \end{cases} \qquad a = 2, b = 0, c = 3$$

Один из коэффициентов уравнения равен нулю, следовательно, конечная смесь находится на диагонали CsBr-Li₂CO₃·Cs₂CO₃. Уравнение запишем в виде брутто-реакции:

$$3Cs_2CO_3 + Li_2CO_3 + 2LiBr + Li_2CO_3 \cdot Cs_2CO_3 = 2CsBr + 3(Li_2CO_3 \cdot Cs_2CO_3)$$
 (2.85)
 $\Delta_r H^{\circ}_{298} = (2(-394.6)+3(-2351.6))-(3(-1136.0)+(-1215.6)+2(-350.3)+(-2351.6))$
 $\Delta_r H^{\circ}_{298} = -188.1 \text{ кДж.}$
 $\Delta_r G^{\circ}_{298} = -177.3 \text{ кДж.}$

Приведенную брутто-реакцию можно привести в виде более простых:

$$Cs_2CO_3 + 2L_1Br = 2CsBr + L_{12}CO_3$$
 (реакция обмена) (2.86)

....

T · **G**

$$2Cs_2CO_3 + 2Li_2CO_3 = 2(Li_2CO_3 \cdot Cs_2CO_3)$$

$$(oopa3oBahue 3a счет взаимодействия)$$

$$Li_2CO_3 \cdot Cs_2CO_3 + 2Li_2CO_3 \cdot Cs_2CO_3 = (накопление 3a счет взаимодействия)$$

$$(2.87)$$

$$(2.87)$$

$$(2.88)$$

Вариант 8. Исходные соли $2CsBr+LiBr+3Li_2CO_3+Cs_2CO_3+$ + $Li_2CO_3\cdot Cs_2CO_3$. Рассмотрим симплекс LiBr-Li_2CO_3-LiBr · CsBr и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты *a*, *b*, *c*:

 $2CsBr + LiBr + 3Li_2CO_3 + Cs_2CO_3 + Li_2CO_3 \cdot Cs_2CO_3 = aLiBr + bLi_2CO_3 + c(LiBr \cdot CsBr)$ (2.89)

$$\begin{cases} a + 2b + c = \text{Li}^+ = 9\\ a + 2c = \text{Br}^- = 3\\ b = \text{Cs}^+ = 6 \end{cases} \qquad a = -9, b = 6, c = 6$$

Один из коэффициентов уравнения имеет отрицательное значение, следовательно, конечная смесь не входит в выбранный симплекс.

Рассмотрим симплекс CsBr-Li₂CO₃-LiBr·CsBr и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты a, b, c:

 $2CsBr + LiBr + 3Li_2CO_3 + Cs_2CO_3 + Li_2CO_3 \cdot Cs_2CO_3 = aCsBr + bLi_2CO_3 + c(LiBr \cdot CsBr)$ (2.90)

$$\begin{cases} 2b + c = \text{Li}^+ = 9\\ a + c = \text{Cs}^+ = 6\\ b = \text{CO}_3^{2^-} = 6 \end{cases} \qquad a = 9, b = 6, c = -3$$

Один из коэффициентов уравнения имеет отрицательное значение, следовательно конечная смесь не входит в выбранный симплекс.

Рассмотрим симплекс CsBr-Li₂CO₃-(Li₂CO₃·Cs₂CO₃) и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты a, b, c:

 $2CsBr + LiBr + 3Li_2CO_3 + Cs_2CO_3 + Li_2CO_3 \cdot Cs_2CO_3 = aCsBr + bLi_2CO_3 + c(Li_2CO_3 \cdot Cs_2CO_3)$ (2.91)

$$\begin{cases} 2b + 2c = \text{Li}^+ = 9\\ a + 2c = \text{Cs}^+ = 6\\ b = \text{Br}^- = 3 \end{cases} \qquad a = 3, b = 3, c = 3/2$$

Коэффициенты уравнения положительные в правой части уравнения положительные, следовательно, выбранная исходная смесь после расплавления и кристаллизации попадает в выбранный симплекс. Уравнение запишем в виде брутто-реакции:

 $2CsBr + LiBr + 3Li_2CO_3 + Cs_2CO_3 + Li_2CO_3 \cdot Cs_2CO_3 = 3CsBr + 3Li_2CO_3 + 3/2(Li_2CO_3 \cdot Cs_2CO_3)$ (2.92) $\Delta_r H_{298}^{\circ} = -188.1 \text{ кДж.}$ $\Delta_r G_{298}^{\circ} = -177.3 \text{ кДж.}$

Приведенную брутто-реакцию можно привести в виде более простых:

LiBr + Cs₂CO₃ =
$$1/2(Li_2CO_3 \cdot Cs_2CO_3)$$
 (реакция обмена) (2.93)
2CsBr + CsBr = 3CsBr (накопление за счет
B3аимодействия) (2.94)
Li₂CO₃ · Cs₂CO₃ + $1/2(Li_2CO_3 \cdot Cs_2CO_3) =$ (накопление за счет
= $3/2(Li_2CO_3 \cdot Cs_2CO_3)$ (2.95)

Вариант 9. Исходные соли $4CsBr+LiBr+2Li_2CO_3+Cs_2CO_3+3(LiBr\cdotCsBr)+$ + Li₂CO₃·Cs₂CO₃. Рассмотрим симплекс LiBr-Li₂CO₃-LiBr·CsBr и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты *a*, *b*, *c*:

 $4CsBr + LiBr + 2Li_2CO_3 + Cs_2CO_3 + 3(LiBr \cdot CsBr) + Li_2CO_3 \cdot Cs_2CO_3 = aLiBr + bLi_2CO_3 + c(LiBr \cdot CsBr)$ (2.96)

 $\begin{cases} a + 2b + c = \text{Li}^+ = 10 \\ a + 2c = \text{Br}^- = 11 \\ b = \text{Cs}^+ = 11 \end{cases} \qquad a = -11, b = 5, c = 11$

Один из коэффициентов уравнения имеет отрицательное значение, следовательно, конечная смесь не входит в выбранный симплекс.

Рассмотрим симплекс CsBr-Li₂CO₃-LiBr·CsBr и составим уравнения реакции, правая часть которого содержит неопределенные коэффициенты a, b, c:

 $4CsBr + LiBr + 2Li_2CO_3 + Cs_2CO_3 + 3(LiBr \cdot CsBr) + Li_2CO_3 \cdot Cs_2CO_3 =$ $= aCsBr + bLi_2CO_3 + c(LiBr \cdot CsBr)$ (2.97)

 $\begin{cases} a + c = Cs^{+} = 11 \\ 2b + c = Li^{+} = 10 \\ b = CO_{3}^{2-} = 5 \end{cases} \qquad a = 11, b = 5, c = 0$

Один из коэффициентов уравнения равен нулю, следовательно, конечная смесь принадлежит диагонали CsBr-Li₂CO₃. Уравнение бруттореакции запишем в виде:

 $4CsBr + LiBr + 2Li_2CO_3 + Cs_2CO_3 + 3(LiBr \cdot CsBr) + Li_2CO_3 \cdot Cs_2CO_3 =$ 11CsBr + 5Li_2CO_3 (2.98)

50

 $\Delta_{\rm r} {\rm H}^{\circ}_{298} = -188.1$ кДж. $\Delta_{\rm r} {\rm G}^{\circ}_{298} = -177.3$ кДж.

Приведенную брутто-реакцию можно привести в виде более простых:

4CsBr + 7CsBr = 11CsBr	(накопление за счет взаимодействия)	(2.99)
$2Li_2CO_3 + 3Li_2CO_3 = 5Li_2CO_3$	(накопление за счет взаимодействия)	(2.100)

2.5. Моделирование ликвидусов в системе Li⁺,Cs⁺||Br⁻,CO₃²⁻

Система $Cs^+,Li^+||Br^-,CO_3^{2-}$ образована двумя эвтектическими системами $CsBr-Cs_2CO_3$ и LiBr-Li₂CO₃, системой с наличием соединения инконгруэнтного типа плавления с эвтектикой CsBr-LiBr, системой Cs₂CO₃-Li₂CO₃ с наличием соединения конгруэнтного типа плавления и двумя эвтектиками возможны следующие варианты модели ликвидусов (рис 2.3):

Вариант 1. Трехкомпонентные эвтектика Е в симплексе LiBr-D_{l1}-Li₂CO₃. Трехкомпонентная эвтектика Е в симплексе Li₂CO₃-D_K-CsBr. Трехкомпонентная эвтектика Е в симплексе D_K-Cs₂CO₃-CsBr.

Вариант 2. Трехкомпонентная эвтектика E в симплексе LiBr-D_{U1}-Li₂CO₃. Трехкомпонентная эвтектика E в симплексе D_{U1}-Li₂CO₃-CsBr. Трехкомпонентная эвтектика E в симплексе Li₂CO₃-D_K-CsBr. Трехкомпонентная эвтектика E в симплексе CsBr-D_K-Cs₂CO₃.

Вариант 3. Трехкомпонентная эвтектика Е и точка выклинивания R. Трехкомпонентная эвтектика Е в симплексе Li₂CO₃-D_K-CsBr. Трехкомпонентная эвтектика Е в симплексе CsBr-D_K-Cs₂CO₃.

Вариант 4. Трехкомпонентные эвтектика Е и перитектика Р в симплексе LiBr-D_{и1}-Li₂CO₃. Трехкомпонентные эвтектика Е и точка выклинивания R в симплексе CsBr-D_K-Cs₂CO₃.

Рисунок 2.9. — Варианты ликвидуса системы $Cs^+, Li^+ ||Br^-, CO_3^2$ -

Вариант 5. Трехкомпонентная эвтектика E в симплексе LiBr-D_{U1}-Li₂CO₃. Трехкомпонентная эвтектика E в симплексе D_{U1}-Li₂CO₃-CsBr. Трехкомпонентная эвтектика E и точка выклинивания R в симплексе CsBr-D_K-Cs₂CO₃.

Вариант 6. Трехкомпонентная эвтектика Е и точка выклинивания R в симплексе LiBr-D_{и1}-Li₂CO₃. Трехкомпонентные эвтектика Е и перитектика P в симплексе CsBr-Li₂CO₃-Cs₂CO₃.

Вариант 7. Трехкомпонентные эвтектика Е и перитектика Р в симплексе LiBr-CsBr-Li₂CO₃. Трехкомпонентная эвтектика Е и точка выклинивания R в симплексе Li₂CO₃-D_K-CsBr.

52

Вариант 8. Трехкомпонентная эвтектика E в симплексе LiBr-D_{U1}-Li₂CO₃. Трехкомпонентная эвтектика E в симплексе D_{U1}-Li₂CO₃-CsBr. Трехкомпонентная эвтектика E и перитектика P в симплексе Li₂CO₃-D_K-CsBr.

Вариант 9. Трехкомпонентная эвтектика Е и точка выклинивания R в симплексе LiBr-CsBr-Li₂CO₃. Трехкомпонентная эвтектика Е и перитектика P в симплексе Li₂CO₃-D_K-CsBr.

2.6. Расчет минимумов трехкомпонентных систем MHal-MBr-M₂CO₃ (M₂SO₄) (M- Na⁺, K⁺, Hal-Br⁻, I⁻) методом Мартыновой – Сусарева.

[116, Метод Мартыновой _ Сусарева 117] основан на термодинамических соотношениях, справедливых для тройных гетероазеотропных систем. Состав и температура тройных минимумов систем рассчитываются с использованием данных о бинарных системах, образующих данную систему.

Таблица 2.2 Расчетные координаты минимумов в трехкомпонентных системах

		Координаты минимумов			
Mo		Содерж	Температура		
JN⊡	Система	_	минимума		
сист.		1	2	3	t °C
1		43.8	43.8	12.4	589.9
1	\mathbf{KI} - \mathbf{KDI} - $\mathbf{K}_2\mathbf{CO}_3$	41.1	41.1	17.7	585.8
2	KI-KBr-K ₂ SO ₄	46.2	46.2	7.5	634.7
Z		43.6	43.6	12.7	645.0
2	NaCl-NaBr-Na ₂ CO ₃	30.9	30.9	38.2	536.7
3		35.5	35.5	29.0	552.5
4	NaCl-NaBr-Na ₂ SO ₄	32.9	32.9	34.2	517.4
4		33.0	45.9	21.1	563.8
5	NaI-Na ₂ CO ₃ -Na ₂ SO ₄	72.9	16.3	10.8	574.9
2		75.9	8.5	15.6	584.0
6	NaI-NaBr-Na ₂ SO ₄	65.0	21.7	13.3	585.2
U		55.7	26.2	18.1	503.4

На основе метода был разработан алгоритм расчета состава и температуры точек, отвечающих составам с минимальной температурой плавления тройных систем [118], который реализован в среде визуального программирования Delphi [119]. В таблице 2.2 приведены координаты минимумов, рассчитанные по методу Мартыновой-Сусарева в двух вариантах.

Как видно из таблицы 2.2, минимальную температуру плавления 503.4 имеет минимум в системе NaI-NaBr-Na₂SO₄.

Глава 3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

3.1 Применяемые экспериментальные методы исследования

3.1.1. Дифференциальный термический анализ

Основной метод экспериментального исследования, применявшийся в данной работе, дифференциальный термический анализ. Данный метод анализа позволяет получать данные о фазовых переходах в многокомпонентных системах, которые необходимы для построения фазовых диаграмм состав-температура. Эти диаграммы необходимы для определения областей применения конкретных смесей систем.

Исследование образцов проводили на установке ДТА с верхним подводом проволочных термопар (рис. 3.1). Установка состояла из печи шахтного типа, включающей внешнюю стенку, изготовленную из асбеста. Слой теплоизоляции из керамических гранул. Стакан из кварцевого стекла с нагревательным элементом, изготовленным из нихромового сплава X20H80 (около 20% хрома и 80% процентов никеля, предельная рабочая температура 1200 °C). Внутри стакана установлена ячейки около из шамотаультралегковеса для микротиглей с исследуемым и индифферентным В индифферентного веществами. качестве вещества используется свежепрокаленный безводный оксид алюминия. Термопары изготовлены из платины и сплава платины с родием (10% родия). Холодный спай термопар термостатируется при 0 °С в сосуде Дьюара, заполненным тающим льдом. Аналоговый термопар, поступает аналогово-цифровой сигнал с В преобразователь ЛА-20USB (многофункциональное устройство аналоговоцифрового преобразования для IBM PC/AT, совместимых компьютеров на шину USB). Далее он преобразовывается в цифровой и поступает на персональный компьютер. На компьютере данные выводятся в программе DSC Tool 2.0 в виде температурных и дифференциальных кривых.

Рисунок 3.1 — Принципиальная схема установки ДТА. 1 — лабораторный автотрансформатор (ЛАТР), 2 — блок нагрева (печи шахтного типа), 3 — спираль нагрева, 4 — тигель с образцом, 5 — тигель с эталоном, 6 — комбинирован-ная термопара; 7 — холодный спай термопар (сосуд Дьюара с тающим льдом), 8 — аналого-цифровой преобразователь (АЦП) — интерфейс ДТА, 9 — компьютер с установленной программой DSC Tool 2.0

Таблица 3.1 – Реперные вещества для калибровки установки ДТА

N⁰	Вещество	Фазовый переход	Температура, °С
1	AgNO ₃	плавление	209.0
2	NaNO	плавление	306.0
L	InalnO ₃	полиморфный переход	276.0
3	KNO ₃	плавление	334.0
4	$K_2Cr_2O_7$	плавление	397.0
5	PbCl ₂	плавление	494.0
6	LiBr	плавление	550.0
7	LiCl	плавление	610.0
8	CsCl	плавление	645.0
9	RbCl	плавление	723.0
10	KCl	плавление	771.0
11	NaCl	плавление	801.0
10	Na ₂ SO ₄	плавление	884.0
12		полиморфный переход	241.0
13	BaCl ₂	плавление	961.0
14	NaF	плавление	996.0
15	K.SO.	плавление	1069.0
	K ₂ 30 ₄	полиморфный переход	584.0

Скорость нагрева и охлаждения образцов составляла 10 градусов в минуту. Точность измерения температуры была около ±2.5 °C. Образцы гомогенизировались при плавлении. Точность измерения массы образцов составляла 0,0001 г. Применялись аналитические весы модели Shinko Denshi HTR-220CE. Термопары были предварительно градуированы по

температурам плавления и полиморфных переходов неорганических солей (табл. 3.1). Фазовые диаграммы создавались в графическом редакторе векторной графики CorelDRAW 2022. Расчеты составов осуществлялись в MO Excel 365. Составы исследуемых образцов представлены в мольных процентах для невзаимных систем и эквивалентных процентах для взаимных систем, температура в градусах Цельсия.

3.1.2. Определение энтальпий фазовых превращений

Энтальпию плавления смесей определяли с помощью метода ДСК. Для определения энтальпии каждого образца, было получено как минимум три кривых ΔT охлаждения исследуемого состава и три кривых ΔT эталонного вещества. В качестве эталонных применялись вещества с температурами плавления, близкими к температурам плавления образцов. Расчет энтальпии плавления производили с использованием формулы:

$$\Delta_m H_{\mu c} = \Delta_m H_{\scriptscriptstyle \Im T} \cdot \frac{S_{\mu c}}{S_{\scriptscriptstyle \Im T}} \cdot \frac{T_{\mu c}}{T_{\scriptscriptstyle \Im T}} \, \kappa Д \varkappa / \kappa \Gamma,$$

где $\Delta_m H_{3T}$ — удельная энтальпия фазового перехода эталонного вещества, сравнимого с температурой фазового перехода исследуемой смеси, кДж/кг; S_{ис}, S_{эт} — площади пиков дифференциальных кривых, отвечающие фазовому переходу исследуемой смеси и эталонного вещества соответственно; T_{ис}, T_{эт} — температуры фазовых переходов исследуемой смеси и эталонного вещества соответственно, К. Точность определения удельных энтальпий плавления составляет ± 5%.

3.1.3. Рентгенофазовый анализ.

Рентгенофазовый анализ [86, 127] проб осуществлен на дифрактометре ARLX'TRA. Использовали излучение CuKα, монохроматизация осуществляли с использованием β–никелевого фильтра (I=15 mA, U=30 kB).

Дифрактограммы получали при следующих настройках: скорость регистрации 1 град/мин., переделы измерения – $2 \cdot 10^3$ имп/сек, постоянная времени – 2. Пробы готовили ниже температур конечного затвердевания расплавов на 10–20°C в течение 4 часов, помещали их в платиновые тигли, закаляли во льду, перетирали в агатовой ступке и помещали в стеклянные бюксы. Идентификацию максимумов проводили по межплоскостным расстояниям *d* (нм) и относительным интенсивностям J/J₀ (%) рефлексов с использованием картотеки ASTM и программы XRAYANTM 1.80.

3.2. Исходные вещества

Вещества, используемые в исследованиях, имели степень чистоты XЧ (Содержание основного компонента более 99 %). Они были обезвожены и переплавлены (за исключением карбонатов лития и цезия, так как они является термически неустойчивыми веществами). Гигроскопичные вещества хранились в виде крупных кристаллов и взвешивались в горячем состоянии. Ниже представлена сводная таблица веществ с температурами их фазовых переходов (табл. 3.2).

Вещества	Температура фазового переход		ура рехода	Мольная энтальпия плавления	Мольная энтропия плавления
		Т, К	T, °C	∆ _М Н, кДж/моль	Δ_{M} S, Дж/моль·К
LiF	к→ж	1122	849	27.0	24.1
LiCl	к→ж	883	610	19.7	22.3
LiBr	к→ж	823	550	17.6	21.4
LiI	к→ж	742	469	14.6	19.7
Li ₂ SO ₄	β→ж	1131	858	9.3	8.2
	α→β	848	575	25.5	30.0
Li ₂ CO ₃	β→ж	1005	732	37.6	37.4
	α→β	683	410	2.5	3.6
NaF	к→ж	1266	993	23.7	26.3
NaCl	к→ж	1074	801	28.2	26.2
NaBr	к→ж	1020	747	26.2	25.7

Таблица 3.2 – Термические свойства веществ

NaI	к→ж	934	661	23.7	25.3
Na ₂ CO ₃	ү→ж	1131	858	28.0	24.7
	β→γ	753	480	1.8	2.5
	α→β	622	349	1.0	1.7
Na ₂ SO ₄	ү→ж	1157	884	23.4	20.2
	β→γ	514	241	10.9	21.2
	α→β	509	236	1.65	
KF	к→ж	1131	858	29.3	25.9
KC1	к→ж	1044	771	26.3	25.1
KBr	к→ж	1007	734	25.5	25.3
KI	к→ж	954	681	24.0	25.1
K ₂ CO ₃	к→ж	1173	900	27.8	23.7
K_2SO_4	β→ж	1342	1059	36.8	27.4
	α→β	857	584	8.9	10.4
CsF	к→ж	976	703	21.7	22.2
CsCl	к→ж	918	645	20.2	22.0
	α→β	743	470	3.7	5.0
CsBr	к→ж	911	638	23.5	25.8
CsI	к→ж	905	632	25.5	28.2
$\overline{Cs_2CO_3}$	к→ж	1066	793	-	-
Cs ₂ SO4	к→ж	1288	1015	36.4	28.2
	$\alpha \rightarrow \beta$	940	667	2.51	2.7

Продолжение Таблицы 3.2

Двухкомпонентные системы [149-155], которые входят в состав исследуемых, изученные раннее приведены в таблице 3.3.

Таблица 3.3. – Температура плавления и состав нонвариантных точек двухкомпонентных систем

Система	Точка	Состав, мол. %.		Температура° С
Li ₂ CO ₃ -Li ₂ SO ₄	e 4	62	38	534
LiBr-Li ₂ CO ₃	e5	87	13	476
LiBr-Li ₂ SO ₄	e ₆	73	27	474
LiCl-LiBr	m_1	33	67	519
LiCl-Li ₂ CO ₃	e ₇	76	24	507
LiCl-Li2SO4	e ₈	46	54	482
LiBr-NaBr	m7	80	20	620
	Dи	50	50	500
Li ₂ CO ₃ -Na ₂ CO ₃	р	48	52	492
	e ₃₄	43	57	448
Na ₂ CO ₃ -Na ₂ SO ₄	m ₂	60	40	824
NaBr-Na ₂ CO ₃	e ₁₃	63	37	630

NaBr-Na ₂ SO ₄	e19	62	38	625
NaCl-NaBr	m ₃	50	50	740
NaCl-Na ₂ CO ₃	e ₁₆	55	45	634
NaCl-Na ₂ SO ₄	e ₁₇	61	39	628
NaI-NaBr	m4	68	32	636
NaI-Na ₂ CO ₃	e ₂₀	77	23	588
NaI-Na ₂ SO ₄	e ₂₁	83	17	598
K_2CO_3 - K_2SO_4		HP	TP	
KBr-K ₂ CO ₃	e ₂₇	48	52	630
KBr-K ₂ SO ₄	e ₂₈	82	18	682
KCl-KBr	m_5	55	45	680
KCl-K ₂ CO ₃	e ₂₉	62	38	632
KCl-K ₂ SO ₄	e ₃₀	73	27	698
KI-KBr	m_6	50	50	659
KI-K ₂ CO ₃	e ₃₁	77	23	612
KI-K ₂ SO ₄	e ₃₂	86	14	648
CsBr-Cs ₂ CO ₃	e ₃₅	75	25	560
	D _{1/1}	50	50	305
CsBr-LiBr	p_1	45	55	300
	e ₃₈	40	60	266
	e ₃₆	80	20	500
Cs ₂ CO ₃ -Li ₂ CO ₃	D _K	50	50	565
	e ₃₇	30	70	532

Продолжение таблицы 3.4.

3.3. Трехкомпонентные системы

3.3.1. Трехкомпонентная система NaCl-NaBr-Na₂CO₃

Исследована трехкомпонентная система NaCl-NaBr-Na₂CO₃ [156]. Для экспериментального изучения был выбран политермический разрез A [Na₂CO₃ - 50.0 %, NaCl - 50.0 %] - B [Na₂CO₃ - 50.0 %, NaBr - 50.0 %] B поле кристаллизации компонента карбоната натрия (рис. 3.1). Расположение разреза выбрано таким образом, чтобы он находился в поле кристаллизации индивидуального компонента, был приближен к предполагаемому месту существования эвтектики, а также находился параллельно противоположной стороне треугольника, для простоты расчета содержания компонентов в исследуемых составах. Методом дифференциального термического анализа были исследованы смеси в диапазоне составов от 10% до 40% бромида натрия. Интервал температур исследования от 550°С до 700°С. По результатам исследования смесей с постепенным увеличением содержания бромида натрия был выявлен состав, отвечающий точке проекции \overline{M}_3 тройного минимума на разрезе АВ и содержащий 20.0 % NaCl, 30.0 % NaBr, 50.0 % Na₂CO₃. Температура плавления составила 615 °C (рис 3.2). Затем был исследован нонвариантный разрез Na₂CO₃–M₃, выходящий из вершины кристаллизации карбоната натрия и проходящий через точку проекции тройного минимума на политермическом разрезе АВ. Изучение смесей с постепенным уменьшением содержания карбоната натрия, позволило определить содержание компонентов в точке тройного минимума (мол. %): 24.0 % NaCl, 36.0 % NaBr и 40.0 % Na₂CO₃ (рис 3.3). Солидус системы представлен двумя полями кристаллизации, содержащими следующие фазы, твердый раствор замещения NaCl_xBr_{1-x} и α-Na₂CO₃ (рис. 3.4). Для подтверждения фазового состава, был выполнен рентгенофазовый анализ смеси трехкомпонентного минимума (рис. 3.5).

Рисунок 3.1 – Расположение политермического разреза АВ, в треугольнике

Рисунок 3.2 – Т-х-диаграмма разреза АВ системы

NaCl-NaBr-Na₂CO₃

Рисунок 3.3 – Нонвариантный разрез $Na_2CO_3 - \overline{M}_3 - M_3$ системы

NaCl-NaBr-Na₂CO₃

Рисунок 3.4 – Фазовый треугольник системы NaCl-NaBr-Na₂CO₃

63

Рисунок 3.5 – Рентгенограмма смеси трехкомпонентного минимума системы NaCl-NaBr-Na₂CO₃

3.3.2 Трехкомпонентная система NaCl-NaBr-Na₂SO₄

Исследована трехкомпонентная система NaCl-NaBr-Na₂SO₄ [156]. Для изучения был выбран политермический разрез С [Na₂SO₄ - 60.0 %, NaCl -40.0 %] – D [Na₂SO₄ – 60.0 %, NaBr – 40.0 %] в поле кристаллизации сульфата натрия (рис. 3.6). Исследование составов на данном разрезе позволило выявить состав точки проекции тройного минимума M₄, содержащий 20.0 % NaBr, 20.0 % NaCl, 60.0 % Na₂SO₄. Температура плавления смеси составила 613 °С. Диаграмма соответствовала типу систем с наличием твердых растворов (рис. 3.7). Далее был изучен нонвариантный разрез Na₂SO₄ – \overline{M}_4 – M₄, построенный из вершины кристаллизации сульфата натрия через проекцию тройного минимума на разрезе CD. Исследуя смеси с постепенным уменьшением содержания сульфата натрия, был выявлен состав точки тройного минимума M₄ (мол. %): 35.0 % NaCl, 35.0 % NaBr, 30.0 % Na₂SO₄ (рис. 3.8). Солидус системы представлен двумя полями кристаллизации, содержащими следующие фазы, твердый раствор замещения NaCl_xBr_{1-x} и α-Na₂SO₄ (рис. 3.9). Для подтверждения фазового состава, был выполнен рентгенофазовый анализ смеси трехкомпонентного минимума (рис. 3.10).

Рисунок 3.6 – Фазовый треугольник системы NaCl-NaBr-Na₂SO₄ с

Рисунок 3.7 – *Т-х*-диаграмма разреза CD системы NaCl-NaBr-Na₂SO₄

Рисунок 3.9 – Фазовый треугольник системы NaCl-NaBr-Na₂SO₄

66

Рисунок 3.10 – Рентгенограмма смеси трехкомпонентного минимума системы NaCl-NaBr-Na₂SO₄

3.3.3 Трехкомпонентная система NaI-Na₂CO₃-Na₂SO₄

NaI-Na₂CO₃-Na₂SO₄ [157, 158]. Был Исследована система выбран политермический разрез в поле кристаллизации компонента иодида натрия G $[Na_2CO_3 - 20.0 \%, NaI - 80.0 \%] - H [Na_2SO_4 - 20.0 \%, NaI - 80.0 \%]$ (рис. 3.11). Выбор разреза обусловлен низкой температурой плавления NaI, что понижает температуру плавления исследуемых составов, сокращая время проведения экспериментов. В ходе изучения разреза, были определены соотношение компонентов в точке проекции минимума М₉, которое составило 80.0 % NaI, 14.0 % Na₂CO₃, 6.0 % Na₂SO₄ и температура плавления минимума 576 °C (рис. 3.12). Затем смеси состава был построен нонвариантный разрез NaI – \overline{M}_9 – M_9 , выходящий из полюса кристаллизации индивидуального компонента иодида натрия, через проекцию тройного минимума. Исследуя смеси на нём с постепенным уменьшением содержания иодида натрия, обнаружили смесь, кривая ДТА которой была представлена одним термоэффектом. Таким образом был определён состав тройного минимума системы, соотношение компонентов в котором равно 70.0 % NaI, 21.0 % Na₂CO₃, 9.0 % Na₂SO₄ (рис. 3.13) Солидус системы состоит из двух полей кристаллизации, твёрдый раствор, состава Na₂(SO₄)_x(CO₃)_{1-x} и поле иодида натрия (рис. 3.14).

Рисунок 3.11 – Расположение политермического разреза GH, в треугольнике составов системы NaI-Na₂CO₃-Na₂SO₄

Рисунок 3.12 – *Т*-*х*-диаграмма разреза GH системы NaI-Na₂CO₃-Na₂SO₄

Рисунок 3.13 – *T-х*-диаграмма нонвариантного разреза NaI – \overline{M}_9 – M_9 системы NaI-Na₂CO₃-Na₂SO₄

Рисунок 3.14 – Фазовый треугольник системы NaCl-NaBr-Na₂SO₄

3.3.4 Трехкомпонентная система NaI-NaBr-Na₂SO₄

Исследована система NaI-NaBr-Na₂SO₄ [159]. Для изучения был выбран политермический разрез I [Na₂SO₄– 50.0 %, NaI – 50.0 %] – J [Na₂SO₄ – 50.0 %, NaBr– 50.0 %] расположенный в поле кристаллизации сульфата натрия (рис. 3.15). Методом дифференциального термического анализа были исследованы составы в диапазоне от 10% до 40% бромида натрия. Исследуя ряд составов на данном разрезе, была определена температура плавления 582 °C тройного минимума и состав его проекции \overline{M}_8 при соотношении компонентов 18.0 % NaBr, 32.0 % NaI, 50.0 % Na₂SO₄ (рис. 1.16). Затем был исследован нонвариантный разрез Na₂SO₄– \overline{M}_8 –M₈, выходящий из полюса кристаллизации сульфата натрия и проходящий через проекцию тройного минимума \overline{M}_8 .

Рисунок 3.15 – Расположение политермического разреза IJ в треугольнике составов системы NaI-NaBr-Na₂SO₄

Затем данный разрез был исследован и при постепенном уменьшении содержания сульфата натрия, с сохранением ранее найденного соотношения двух других компонентов иодида и бромида натрия, добились получения единственного термоэффекта, на кривой ДТА изучаемой смеси неорганических веществ, что свидетельствовало о нахождении состава, отвечающего минимуму M₈ трёхкомпонентной системы NaI-NaBr-Na₂SO₄. Соотношение компонентов в нём составило 48.0 % NaI, 27.0 % NaBr и 25.0 % Na₂SO₄ (рис. 3.17). Солидус системы состоит ИЗ двух полей кристаллизации, твёрдый раствор замещения, состава NaI_xBr_{1-x} и поле β полиморфной модификации сульфата натрия (рис. 3.18).

Рисунок 3.17 – *T*-*x*-диаграмма нонвариантного разреза $Na_2SO_4 - \overline{M}_8 - M_8$

системы NaI-NaBr-Na₂SO₄

Рисунок 3.18 – Фазовый треугольник системы NaI-NaBr-Na₂SO₄
3.3.5 Трехкомпонентная система KI-KBr-K₂CO₃

Исследована система KI-KBr-K₂CO₃. Для изучения был выбрал политермический разрез К [50.0 % KI, 50.0 % К₂CO₃] – N [50.0 % KBr, 50.0 % K₂CO₃], расположенный в поле кристаллизации карбоната калия (рис. 3.19). Изучая составы на данном разрезе, было найдено соотношение компонентов в точке проекции тройного минимума \overline{M}_{14} 25.0 % KBr, 25.0 % KI, 50.0 % K₂CO₃. Температура плавления смеси 582 °C. Тип системы непрерывный ряд твердых растворов с минимумом (рис. 3.20). Следующим шагом было изучение нонвариантного разреза $K_2CO_3 - \overline{M}_{14} - M_{14}$, построенного через полюс кристаллизации карбоната калия через проекцию тройного минимума. Был определён состав, отвечающий минимуму М₁₄ трехкомпонентной системы с соотношение компонентов 40.0 % KBr, 40.0 % KI, 20.0 % K₂CO₃. (рис. 3.21) Солидус системы состоит из двух полей кристаллизации, твёрдый раствор, состава KBr_xI_(1-x) и поле β карбоната калия (рис. 3.22). Для подтверждения фазового был выполнен рентгенофазовый состава, анализ смеси трехкомпонентного минимума (рис. 3.23).

Рисунок 3.19 – Расположение политермического разреза KN в треугольнике составов системы KI-KBr-K₂CO₃

Рисунок 3.20 – *Т-х*-диаграмма разреза KN системы KI-KBr-K₂CO₃

Рисунок 3.21 – *T-х*-диаграмма нонвариантного разрез $K_2CO_3 - \overline{M}_{14} - M_{14}$ системы KI-KBr- K_2CO_3

Рисунок 3.22 – Фазовый треугольник системы KI-KBr-K₂CO₃

Рисунок 3.23 – Рентгенограмма смеси трехкомпонентного минимума системы KI-KBr-K₂CO₃

3.3.6 Трехкомпонентная система KI-KBr-K₂SO₄

Исследована система KI-KBr-K₂SO₄. Был выбран политермический разрез О [70.0% KI, 30.0% K₂SO₄] – Q [70.0% KBr, 30.0% K₂SO₄] в поле

кристаллизации сульфата калия (рис. 3.24). Изучая составы на данном разрезе, был найден состав проекции минимума \overline{M}_{15} трехкомпонентной системы, составляющий 36.0% KI, 34.0% KBr, 30.0% К₂SM₁₅ (рис. 3.25) Тип системы с непрерывным рядом твердых растворов KBr_xI_(1-x) с минимумом. Температура плавления смеси 620 °С. Затем был построен нонвариантный разрез K₂CO₃– \overline{M}_{15} – M₁₅, выходящий из полюса кристаллизации сульфата калия \overline{M}_{15} (рис. 3.26). тройного минимума По проекцию результатам И исследования разреза был определен данного состав минимума трехкомпонентной системы \overline{M}_{15} , который равен 43.4% KI, 41.6% KBr, 15.0 % K₂SO₄. Солидус системы состоит из двух полей кристаллизации, твёрдый раствор, состава KBr_xI_(1-x) и поле β полиморфной модификации сульфата натрия (рис. 3.27). Для подтверждения фазового состава, был выполнен рентгенофазовый анализ смеси трехкомпонентного минимума (рис. 3.28).

Рисунок 3.24 – Расположение политермического разреза OQ в треугольнике составов системы KI-KBr-K₂SO₄

Рисунок 3.26 – *T-х*-диаграмма нонвариантного разреза $K_2CO_3 - \overline{M}_{15} - M_{15}$ системы KI-KBr- K_2SO_4

3.4 Четырехкомпонентные системы

3.4.1 Четырехкомпонентная система LiCl-LiBr-Li₂CO₃-Li₂SO₄

Исследована система LiCl-LiBr-Li₂CO₃-Li₂SO₄ [160]. Она включает в себя системы меньшей мерности. Среди них шесть двухкомпонентных, пять

эвтектического типа и одна с твердыми растворами с наличием минимума [154]. Четыре трехкомпонентных системы, три эвтектического типа, одна с наличием твердых растворов с точкой минимума. Карбонат лития имеет свойство подвергаться термическому разложению при температуре выше 700°С. По этой причине навески исследуемых веществ необходимо было гомогенизировать изначально, чтобы снизить температуру плавления смеси до приемлемой. Это осуществлялось методом перетирания смеси в агатовой ступке с добавлением ацетона. Ацетон был выбран по той причине, что исследуемые вещества в нём не растворяются и ацетон быстро и полностью испаряется из смеси. Таким образом навески веществ нагревались до температуры ниже 700°С и подвергались расплавлению без термического разложения карбоната лития. Исследуемый интервал температур составил 300-700°С. Развертка тетраэдра на плоскость представлена на рисунке 3.29. Исходя строения систем меньшей мерности, ИЗ входящих В четырёхкомпонентную, и расположения нонвариантных точек в них, было выбрано политермическое сечение а [60.0% Li₂CO₃, 40.0% LiBr], b [60.0% Li₂CO₃, 40.0% LiCl], с [60.0% Li₂CO₃, 40.0% Li₂SO₄] (рис. 3.30). В данном сечении был выбран одномерный политермический разрез R [60.0% Li₂CO₃, 20.0% Li₂SO₄, 0.0% LiCl, 20.0% LiBr] – S [60.0% Li₂CO₃, 20.0% Li₂SO₄, 20.0% LiCl, 0.0% LiBr] (рис. 3.31). Исследуя составы на данном разрезе, методом дифференциального термического анализа в диапазоне содержания хлорида лития от 6% до 22%, выявили первичную проекцию четверного минимума \overline{M}^{\bullet} на политермическом разрезе (рис. 3.32). Затем изучая разрез с- \overline{M}^{\bullet} - \overline{M}^{\bullet} в сечении abc (рис. 3.33) и разрез в объеме Li₂CO₃-M[■]-M[■], проходящий из полюса кристаллизации карбоната лития через сечение abc (рис. 3.34) определили состав минимума четырехкомпонентной системы 22.5 % LiCl, 22.5% LiBr; 40.0% Li₂CO₃, 15.0% Li₂SO₄ и его температуру 398°С плавления (рис. 3.35)

Рисунок 3.30 – Расположение политермического сечения abc в тетраэдре составов системы LiCl-LiBr-Li₂CO₃-Li₂SO₄

Рисунок 3.31 – Расположение политермического разреза RS в

политермическом сечении abc системы

LiCl-LiBr-Li₂CO₃-Li₂SO₄

Рисунок 3.32 – *Т-х*-диаграмма разреза RS в политермическом сечении abc системы LiCl-LiBr-Li₂CO₃-Li₂SO₄

Рисунок 3.33 – *Т-х*-диаграмма разреза с- $\overline{\overline{M}}$ - $\overline{\overline{M}}$ системы LiCl-LiBr-Li₂CO₃-

Рисунок 3.34 – *Т*-*х*-диаграмма нонвариантного разреза Li₂CO₃-**M**[■]-M[■] системы LiCl-LiBr-Li₂CO₃-Li₂SO₄

Рисунок 3.35 – Схема объемов кристаллизации системы LiCl-LiBr-Li₂CO₃-Li₂SO₄

3.4.2 Четырехкомпонентная система NaCl-NaBr-Na₂CO₃-Na₂SO₄

Исследована система NaCl-NaBr-Na₂CO₃-Na₂SO₄ [161]. Она включает в себя системы меньшей мерности. Шесть двухкомпонентных, среди которых четыре эвтектические, две с непрерывными рядам и твердых растворов с минимальной точкой плавления. Четыре трехкомпонентные системы с непрерывными рядами твердых растворов с минимальной точкой плавления. Исходные навески веществ гомогенизировались при плавлении, так как в изучаемом интервале температур 300-800°C, все вещества оставались стабильны и не подвергались термическому разложению. Исходя из строения систем огранения и расположения нонвариантных точек в них, было предложено, что стандартным методом изучить систему невозможно (рис 3.36). Причиной этому стало наличие во всех ограняющих системах трёхкомпонентных минимумов и наличие в солидусе четырехкомпонентной

системы всего двух объёмов кристаллизации, представленных твёрдыми растворами, что не позволяет найти проекции существующего минимума в системе. По этой причине были выбраны два сечения NaCl-NaBr-m₂ (рис. 3.37) и Na₂CO₃-Na₂SO₄-m₃ (рис. 3.38). На них были выбраны и исследованы разрезы VW (рис. 3.39) и XY (рис. 3.40). На линии пересечения этих сечений, были получены минимальные данные по температурам для обоих разрезов для двух фигуративных точек A_M и B_M . В объёме кристаллизации была обнаружена общая линия пересечения NaCl-NaBr-m₂ и Na₂CO₃-Na₂SO₄-m₃ (рис. 3.41). На ней было исследовано несколько составов и выявлен предполагаемый состав четырёхкомпонентного минимума 28 % NaCl, 28 % NaBr, 25 % Na₂CO₃, 19 % Na₂SO₄ и его температура плавления 585°C (рис. 3.42). Ликвидус системы представлен двумя объёмами твёрдых растворов замещения. Раствор Na₂(CO₃)_x(SO₄)_{1-x} на основе карбоната и сульфата калия и раствор на основе хлорида и бромида калия NaCl_xBr_{1-x}. Их разделяет поверхность е₁₀-e₁₁-e₁₂-e₁₃.

Рисунок 3.36 – Развёртка тетраэдра системы NaCl-NaBr-Na₂CO₃-Na₂SO₄ на

плоскость

Рисунок 3.38 – Расположение политермического разреза в политермическом сечении Na₂CO₃-Na₂SO₄-m₃ системы NaCl-NaBr-Na₂CO₃-Na₂SO₄

Рисунок 3.39 – *Т*-х-диаграмма разреза VW в сечении NaCl-NaBr-m₂ системы

Рисунок 3.40 – *Т-х*-диаграмма разрез XY в сечении Na₂CO₃-Na₂SO₄-m₃ системы NaCl-NaBr-Na₂CO₃-Na₂SO₄

Рисунок 3.41 – Тетраэдр составов с общей линией сечений

 Na_2CO_3 - Na_2SO_4 - m_3 NaCl-NaBr- m_2 системы NaCl-NaBr-Na_2CO_3-Na_2SO_4

Рисунок 3.42 – Тетраэдр составов системы NaCl-NaBr-Na $_2$ CO $_3$ -Na $_2$ SO $_4$

3.4.3 Четырехкомпонентная система KCl-KBr-K₂CO₃-K₂SO₄

Исследована система KCl-KBr-K₂CO₃-K₂SO₄. Состоит из ограняющих систем, включающих шесть двухкомпонентных, среди которых четыре эвтектических, одна типа твердых растворов с точкой минимума и одна с непрерывными рядами твердых растворов без точки минимума. Развертка тетраэдра системы на плоскость представлена на рисунке 3.43. Четыре трехкомпонентных системы, среди которых две представлены типом твердых растворов с точкой минимума и две с непрерывными рядами твердых растворов без точки минимума (рис. 3.44). После и следования ранее неизученных трехкомпонентных систем [162] и построения эскиза тетраэдра, было выдвинуто предположение что четверной минимум в объеме кристаллизации отсутствует. Это связано С тем, ЧТО ПО линиям, соединяющим двойные эвтектики можно наблюдать снижение температуры по принципу, характерному для непрерывного ряда твердых растворов. А именно по линиям: e₂₈ – e₂₇ (от 682°С до 630°С), e₃₀ – e₂₉ (от 698°С до 632°С) и предположительно M₁₁ – M₁₀ (от 651°C до 614°C). Для подтверждения, исследованы два состава в объеме четырехкомпонентной системы KCl-KBr-K₂CO₃-K₂SO₄. Первый состав, точка х (37.5% KCl, 37.4% KBr, 21.1% K₂CO₃, 4.0 % K₂SO₄), лежащая на линии соединяющей M₁₁ – M₁₀, с содержанием сульфата калия 4.0%. Второй состав точка у(35.8% KCl, 35.8% KBr, 23.4% K_2CO_3 , 5.0 % K_2SO_4) лежащий на линии $M_{10} - K_2SO_4$, с содержанием сульфата калия 5.0%. (рис. 3.45) Выбор данных значений обосновывается отличием этих составов от самой низкоплавкой точки на элементах огранения. Полученные кривые ДТА указывают на то, что температура возрастает независимо от выбранного направления исследования смесей (рис. 3.46). Этого достаточно чтобы утверждать, что в четырехкомпонентной системе KCl-KBr-K₂CO₃-K₂SO₄ нет более низкоплавкого состава чем точка M_{10} .

Рисунок 3.43 – Развёртка тетраэдра системы KCl-KBr-K₂CO₃-K₂SO₄ на

Рисунок 3.44 – Тетраэдр составов системы KCl-KBr-K₂CO₃-K₂SO₄

89

Рисунок 3.46 – Термограммы: а) точка M₁₀ (24.4% KCl, 40,6% KBr, 35,0% K₂CO₃); б) точка X на линии M₁₁ – M₁₀ (37.5% KCl, 37.4% KBr, 21.1% K₂CO₃, 4.0 % K₂SO₄); в) точка Y (35.8% KCl, 35.8% KBr, 23.4% K₂CO₃, 5.0 % K₂SO₄)

3.4.4 Четырехкомпонентная система KI-KBr-K₂CO₃-K₂SO₄

Исследована система KI-KBr-K₂CO₃-K₂SO₄. Состоит из ограняющих систем, включающих шесть двухкомпонентных, среди которых четыре эвтектических, одна типа твердых растворов с точкой минимума и одна с непрерывными рядами твердых растворов без точки минимума. Четыре трехкомпонентных системы, среди которых две представлены типом твердых растворов с точкой минимума и две с непрерывными рядами твердых растворов без точки минимума (рис. 3.47). После исследования ранее неизученных трехкомпонентных систем и построения эскиза тетраэдра, было выдвинуто предположение что четверной минимум в объеме кристаллизации отсутствует. Это связано с тем, что по линиям, соединяющим двойные можно наблюдать снижение температуры эвтектики ПО принципу, характерному для непрерывного ряда твердых растворов. А именно по линиям: e_{28} – e_{27} (от 682°C до 630°C), e_{32} – e_{31} (от 648°C до 612°C) и предположительно $M_5 - M_{14}$ (от 620°C до 582°C). Для подтверждения, исследованы два состава в объеме четырехкомпонентной системы KI-KBr-K₂CO₃-K₂SO₄. Первый состав, точка k (38.2% KI, 38.1% KBr, 21.7% K₂CO₃, 2.0 % K₂SO₄), лежащая на линии соединяющей M₅ – M₁₄, с содержанием сульфата калия 2%. Второй состав точка (f 36.4% KI, 36.4% KBr, 24.2% K_2CO_3 , 3.0 % K_2SO_4), лежащий на линии $M_{14} - K_2SO_4$, с содержанием сульфата калия 3%. (рис. 3.43) Выбор данных значений обосновывается отличием этих составов от самой низкоплавкой точки на элементах огранения. Полученные кривые ДТА указывают на то, что температура возрастает независимо от выбранного направления исследования смесей (рис. 3.44). Этого достаточно чтобы утверждать, что в четырехкомпонентной системе KI-KBr-K₂CO₃-K₂SO₄ нет более низкоплавкого состава чем точка M₁ (рис. 3.45).

Рисунок 3.47 – Развёртка тетраэдра системы KI-KBr-K₂CO₃-K₂SO₄ на

Рисунок 3.48 – Тетраэдр составов системы KI-KBr-K₂CO₃-K₂SO₄

Рисунок 3.49 – Тетраэдр системы KI-KBr-K₂CO₃-K₂SO₄

Рисунок 3.50 – Кривые ДТА охлаждения из расплавов смесей: а) точка M₁₄ (КІ-40,0%_{мол.}; КВг-40,0%_{мол.}; К₂CO₃-20,0%_{мол.}) –; б) точка *x* на линии M₅-M₁₄ (КІ-38,2%_{мол.}; КВг-38,1%_{мол.}; К₂CO₃-21,7%_{мол.}; К₂SO₄-2,0%_{мол}); в) точка *y* на линии M₁₄-К₂SO₄ (КІ-36,4%_{мол.}; КВг-36,4%_{мол.}; К₂CO₃-24,2%_{мол.}; К₂SO₄-3,0%_{мол})

3.4 Трехкомпонентные взаимные системы

3.4.1. Трехкомпонентная взаимная система Li⁺, Na⁺|| Br⁻, CO₃²⁻

Исследована система Li^+ , $Na^+ \parallel Br^-$, CO_3^{2-} [163]. Изучение системы начали с исследования предполагаемой стабильной диагонали NaBr-Li₂CO₃. Были исследованы смеси солей в диапазоне от 20% мол. до 90% мол. Li₂CO₃ (рис. 3.51). Составы вне этого диапазона, исследовать не удалось по причине того, что температуры плавления смесей были выше температуры начала разложения карбоната лития. Карбонат лития имеет свойство подвергаться термическому разложению при температуре выше 700°С. По этой причине необходимо было навески исследуемых веществ гомогенизировать изначально, чтобы снизить температуру плавления смеси до приемлемой. Это осуществлялось методом перетирания смеси в агатовой ступке с добавлением ацетона. Ацетон был выбран так как он быстро и полностью испаряется из смеси. Таким образом навески веществ нагревались до температуры ниже 700°С и подвергались расплавлению без термического разложения карбоната лития. Было определено содержание компонентов эвтектического состава 65% Li₂CO₃ и 35% NaBr и температура плавления 620°С (рис. 3.52).

Рисунок 3.51 – Квадрат составов системы Li^+ , $Na^+ \parallel Br^-$, CO_3^{2-}

Рисунок 3.52 – *Т-х*-диаграмма диагонали NaBr-Li₂CO₃

Следующим шагом стало исследование симплекса NaBr-LiBr-Li₂CO₃. Был выбран политермический разрез A [30.0% LiBr, 0.0% NaBr, 70.0% Li₂CO₃], B [0.0% LiBr, 30.0% NaBr, 70.0% Li₂CO₃] (рис. 3.53) в поле кристаллизации карбоната лития. Исследуя смеси на данном разрезе, было определено, что в симплексе отсутствуют термоэффекты отвечающие третичной эвтектической кристаллизации. На кривой вторичной кристаллизации выявлена проекция тройного минимума трехкомпонентной системы, и соотношение бромида лития и бромида натрия в смеси с температурой плавления 450°C (рис. 3.54)

95

Рисунок 3.53 – *Т-х*-диаграмма разреза AB в симплексе LiBr-NaBr-Li₂CO₃

Затем был исследован разрез Li₂CO₃- \overline{M}_{17} -M₁₇ соединяющий полюс кристаллизации Li₂CO₃ проходящий через проекцию минимума (рис. 3.55). Исследуя этот разрез, уменьшали содержание карбоната лития до появления на кривой ДТА одного термоэффекта, отвечающего смеси с минимальной температурой плавления 50 % Li₂CO₃, 11.5% LiBr, 38.5% NaBr. Затем исследованию симплекса $NaBr-Li_2CO_3 \cdot Na_2CO_3 - Na_2CO_3$. приступили к Выбран политермический разрез С [20.0% LiBr, 40.0% Li₂CO₃, 40.0% Na₂CO₃]. D [20.0% LiBr, 20.0% Li_2CO_3 , 60.0% $Na_2CO_3].$ Изучив политермический разрез CD был определен состав проекции тройной эвтектики и ее температура 470°С (рис. 3.56). Затем был построен нонвариантный разрез из полюса кристаллизации NaBr, проходящий через (рис. 3.57). Далее проекцию эвтектики последовательно уменьшая содержания бромида натрия, был выявлен её состав 10.0 % NaBr, 58.0 % Na₂CO₃, 32.0 % Li₂CO₃ (рис. 3.58).

Рисунок 3.54 – *Т*-*х*-диаграмма разреза Li₂CO₃– \overline{M}_{17} – M_{17} симплекса

LiBr-NaBr-Li₂CO₃

Рисунок 3.55 – *Т-х*-диаграмма разреза CD симплекса NaBr-Li₂CO₃-Na₂CO₃

Рисунок 3.56 – Нонвариантный разрез симплекса NaBr-Li₂CO₃-Na₂CO₃

Рисунок 3.57 – Проекция фазового комплекса на квадрат составов системы Li⁺, Na⁺|| Br⁻, CO₃²⁻

98

3.4.2. Трехкомпонентная взаимная система Li⁺, Cs⁺|| Br⁻, CO₃²⁻

Изучение системы начали с исследования предполагаемой стабильной диагонали CsBr-Li₂CO₃. Были исследованы смеси солей в диапазоне от $10\%_{3\kappa B.}$ до $70\%_{3\kappa B.}$ Li₂CO₃ (рис. 3.58). Составы с большим содержанием карбоната лития исследованы не были, чтобы избежать разложения карбоната лития. Составы гомогенизировались при плавлении, так как низкая температура плавления бромида цезия, позволяла не нагревать образцы до температуры разложения карбоната лития. Было определено содержание компонентов эвтектического состава 22% Li₂CO₃ и 78% CsBr и температура плавления 624°C (рис. 3.59).

Рисунок 3.58 – Квадрат составов системы Li^+ , $Cs^+ \parallel Br^-$, CO_3^{2-}

Рисунок 3.59 – *Т*-х-диаграмма диагонали CsBr-Li₂CO₃

Рисунок 3.60 – Квадрат составов системы Li⁺, Cs⁺|| Br⁻, CO₃²⁻ с политермическими разрезами

Как видно из рисунка 3.60, система представлена 4 симплексами. В первую очередь, мы приступили к исследованию симплекса CsBr-D_K-Cs₂CO₃. Был выбран политермический разрез G [80% CsBr, 20% Cs₂CO₃,0% Li₂CO₃], F [80% CsBr, 10% Cs₂CO₃,10% Li₂CO₃] (рис. 3.61) в поле кристаллизации бромида цезия. Изучая составы на данном разрезе, был выявлен состав,

отвечающий проекции трехкомпонентной эвтектике \overline{E}_{19} и температура плавления 450°С.

Рисунок 3.61 – *Т*-*х*-диаграмма политермического разреза GF

Затем был исследован разрез $Li_2CO_3-\overline{E}_{19}-E_{19}$ выходящий из полюса кристаллизации бромида цезия и проходящий через проекцию тройной эвтектики (рис. 3.62). Изучая составы на данном разрезе, с уменьшением содержания бромида цезия, была определена смесь, которой отвечает единственный термоэффект на кривой ДТА, состава 20% CsBr, 56% Cs₂CO₃, 24% Li₂CO₃.

 $Li_2CO_3 - \overline{E}_{19} - E_{19}$

Исследуя составы в поле кристаллизации компонента карбоната цезия было выявлено наличие точки выклинивания R с температурой плавления 459°C. Таким образом разбиение системы на симплексы реализуется в ином варианте, стабильной секущей CsBr-D_K не существует.

Симплекс CsBr-D_{И1}-Li₂CO₃ не содержит в себе точек нонвариантного равновесия.

Следующим исследовали симплекс D_{1И}-LiBr-Li₂CO₃. Был выбран политермический разрез L [70% LiBr, 30% Li₂CO₃, 0% CsBr], Z [70% LiBr, 0% Li₂CO₃, 30% CsBr] (рис. 3.63) в поле кристаллизации карбоната лития. Изучая термограммы кристаллизации составов на разрезе, определили проекцию тройной эвтектики, тройной перитектики и их температуры плавления 213°С 260°C. Затем был построен нонвариантный разрез И ИЗ полюса кристаллизации карбоната лития, проходящий через проекцию \overline{E}_{20} (рис. 3.64). Исследуя составы на данном разрезе, был выявлен состав трехкомпонентной эвтектики 30.5% CsBr, 64.5% LiBr, 5% Li₂CO₃ (рис. 3.65).

Рисунок 3.63 – *Т*-х-диаграмма политермитческого разреза LZ

Рисунок 3.65 – Проекция квадрата составов системы Li^+ , $Cs^+ \parallel Br^-$, CO_3^{2-}

103

Также изучена твердофазная реакция обмена нестабильной пары солей 2LiBr+ Cs₂CO₃. Для этого, образец, соответствующий составу точки конверсии K, 50 % LiBr, 50% Cs₂CO₃ был предварительно гомогенизирован и исследован методом дифференциальной термогравиметрии (рис. 3.66)

Рисунок 3.66 – Дериватограмма нагрева состава 50 экв. % LiBr + 50 экв. % Cs₂CO₃

Как видно из полученной дериватограммы, на кривой ДТА нагревания фиксируется экзоэффект при 483°С, который отвечает реакции обмена. Эндоэффект при температуре 624°С, соответствующий температуре плавления эвтектической смеси е₄₀ на стабильной диагонали и эндоэффект при 694°С, соответствующий окончательному плавлению смеси.

Рисунок 3.67 – Дериватограмма охлаждения состава 50 экв. % LiBr + 50 экв. % Cs₂CO₃

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

4.1. Анализ теоретических и экспериментальных данных по изученным системам.

В работе проведено теоретическое и экспериментальное исследование шести трехкомпонентных, двух трехкомпонентных взаимных, пяти четырехкомпонентных систем на основе галогенидов, карбонатов и сульфатов лития, натрия, калия и цезия.

Для трехкомпонентных систем, был произведен прогноз строения ликвидусов. Во всех трехкомпонентных системах типа MHal-MBr-M₂CO₃ (M₂SO₄) (M- Na⁺, K⁺, Hal-Br⁻, I⁻) реализуется вариант с образованием непрерывных рядов твердых растворов с наличием смеси с минимальной температурой плавления.

Для точек нонвариантного равновесия были рассчитаны на основе литературных данных энтальпия плавления, удельная теплоёмкость и плотность смеси (табл. 4.1). Значения удельной электропроводности были рассчитаны для температур плавления смесей на основе уравнений, представленных в литературе [165].

NaCl-NaBr-Na₂CO₃. Относится Система к типу систем с непрерывными рядами твердых растворов. Имеет точку M₃ с минимальной на моновариантной кривой. температурой плавления 615°С Состав трехкомпонентного минимума M₃ (мол. %): 23.0% NaCl, 36.0% NaBr, 40.0% Na₂SO₄. Рассчитанные температура плавления и состав смеси минимума по методу Мартыновой-Сусарева следующие: вариант 1 – 30.9% NaCl, 30.9% Na₂CO₃, температура плавления 537°C. Отличается от NaBr, 38.2% экспериментальных данных по составу в среднем на 6.9% а максимально по температуре на 8.8%; вариант 2 – 35.5% NaCl, 35.5% NaBr, 29.0% Na₂CO₃, температура плавления 553 °C. Отличается на 11.5% по составу и на 7,1% по температуре (рис. 4.1).

Ликвидус системы представлен двумя полями кристаллизации, разделенными кривой моновариантного равновесия:

 e₂₀Na₂CO₃e₁₆ – поверхность кристаллизации компонента Na₂CO₃, равновесие L≓γ-Na₂CO₃ (дивариантное двухфазное равновесие);

2. е₂₀NaClNaBre₁₆ – поверхность кристаллизации твёрдого раствора замещения NaCl_xBr_{1 – x}, равновесие L≓NaCl_xBr_{1 – x} (дивариантное двухфазное равновесие);

3. $e_{20}e_{17} - L \rightleftharpoons \gamma$ -Na₂CO₃ + NaCl_xBr_{1-x} (моновариантное трехфазное равновесие).

Таблица 4.1 – Физические свойства индивидуальных компонентов изученных систем

Вещества	Удельная	Плотность	Удельная	Молеку
	теплоемкость	вещества	энтальпия	лярная
	(25°C)	(25°C)	плавления	масса
	С _{см} , Дж/моль · К	$ ho_{cm},\kappa\Gamma/m^3$	$\Delta_{\mathrm{m}}\mathrm{H}$, кДж/кг	$M_r \Gamma / $ моль
LiCl	48.00	2.07	464	42.394
LiBr	51.88	3.46	203	86.845
Li ₂ CO ₃	97.40	2.11	483	73.891
Li ₂ SO ₄	117.57	2.22	85	109.940
NaCl	49.71	2.17	483	58.440
NaBr	51.40	3.21	255	102.894
NaI	52.22	3.66	158	149.890
Na ₂ CO ₃	112.30	2.53	264	105.988
Na_2SO_4	127.30	2.70	165	109.940
KBr	52.30	2.75	214	119.002
KI	52.90	3.12	145	166.003
K ₂ CO ₃	115.70	2.43	201	138.205
K_2SO_4	130.10	2.66	211	174.259
CsBr	51.90	4.44	110	212.810
Cs_2CO_3	123.80	-	-	361.870

На рисунке 4.1. нанесены расчетные данные минимума M_3 и экспериментальные данные на кривой моновариантного равновесия $e_{20}e_{17}$. На проекции фазового комплекса доминирует поле кристаллизации непрерывных рядов твердых растворов $NaCl_xBr_1$. Кривая ДТА охлаждения смеси представлена на рисунке 4.2.

Рисунок 4.1 – Фазовый треугольник системы NaCl-NaBr-Na₂CO₃

Рисунок 4.2 – Кривая ДТА охлаждения смеси с минимальной температурой плавления системы NaCl-NaBr-Na₂CO₃
Для состава трехкомпонентного минимума M₃ системы NaCl-NaBr-Na₂CO₃ рассчитали свойства, необходимые для определения области прикладного применения.

1. Пересчитаем мол. % в мас. %:

$$\omega_{(X).} = \frac{\omega_{\text{MOЛ}(X).} \cdot M_X}{(\omega_{\text{MOЛ}(X).} \cdot M_X) + (\omega_{\text{MOЛ}(Y).} \cdot M_Y) + (\omega_{\text{MOЛ}(Z).} \cdot M_Z)} \cdot 100$$

$$\omega_{NaCl} \frac{0.24 \cdot 58.44}{(0.24 \cdot 58.44) + (0.36 \cdot 102.89) + (0.4 \cdot 105.98)} \cdot 100 = 15 \text{ mac. \%}$$

$$\omega_{NaBr} = 40 \text{ mac. \%}$$

$$\omega_{Na_2CO_3} = 45 \text{ mac. \%}$$

2. Рассчитаем удельную и мольную энтальпии плавления по правилу аддитивности ($\Delta_m H = \sum_{i=1,2} \omega_i \Delta_m H_i \kappa Дж/кг$):

 $\Delta_{\rm m}$ H = (0.15 · 482) + (0.4 · 255) + (0.45 · 264) = 293 кДж/кг. Δ H = (0.15 · 28.2) + (0.4 · 26.2) + (0.45 · 28.0) = 29.8 кДж/моль.

3. Рассчитаем мольную энтропию плавления ($\Delta_m S = \frac{\Delta_m H}{T}$, Дж/моль·К):

$$\Delta_{\rm m} {
m S} = {29.85 \over 888} = 0.0336 \; {
m кДж/моль} \cdot {
m K} = 33.6 \; {
m Дж/моль} \cdot {
m K}$$

4. Рассчитаем удельную теплоемкость смеси по правилу аддитивности: $C_{CM} = (0.15 \cdot 49.71) + (0.40 \cdot 51.40) + (0.45 \cdot 112.30) = 78.55 \, Дж/моль \cdot K$

5. Рассчитаем плотность смеси по правилу аддитивности(25°С):

 $\rho_{\rm CM} = (0.15 \cdot 2.17) + (0.40 \cdot 3.21) + (0.45 \cdot 2.53) = 2.75 \frac{\Gamma}{\rm CM^3} = 2750 \frac{\rm Kr}{\rm M^3}.$

6. Рассчитаем удельную объемную энтальпию плавления с учетом данных таблицы 4.2.:

$$\Delta_{\rm m} {\rm H}_{\rm V} = \Delta_{\rm m} {\rm H} \cdot \rho_{\rm cm} = 262 \cdot 2750 = 750500 \ \frac{{\rm K} {\rm J} {\rm K}}{{\rm M}^3} = 750 \frac{{\rm M} {\rm J} {\rm K}}{{\rm M}^3}$$

7. Рассчитаем значения электропроводности для индивидуальных компонентов:

$$\varkappa_{\text{NaCl}} = -2.4975 + 8.0431 \cdot 10^{-3} \text{T} - 2.2227 \cdot 10^{-6} \cdot \text{T}^2$$
$$\varkappa_{\text{NaCl}(615)} = 2.892 \text{ om}^{-1} \text{cm}^{-1}$$

$$\begin{split} \varkappa_{\text{NaCl}(665)} &= 3.091 \text{ om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaCl}(715)} &= 3.279 \text{ om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaBr}} &= 9.097 \text{exp}(-2324/1.98717 \cdot \text{T}) \\ \varkappa_{\text{NaBr}(615)} &= 2.437 \text{ om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaBr}(665)} &= 2.615 \text{ om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaBr}(715)} &= 2.785 \text{ om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{CO}_3} &= 13.758 \text{exp}(-3527/1.98717 \cdot \text{T}) \\ \varkappa_{\text{Na}_2\text{CO}_3(615)} &= 1,864 \text{ om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{CO}_3(665)} &= 2.074 \text{ om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{CO}_3(715)} &= 2.282 \text{ om}^{-1}\text{cm}^{-1} \end{split}$$

8. Рассчитаем удельную электропроводность смеси по правилу аддитивности:

 $\begin{aligned} \varkappa_{615} &= (0.15 \cdot 2.892) + (0.40 \cdot 2.437) + (0.45 \cdot 1.864) = 2.247 \text{ om}^{-1} \text{cm}^{-1} \\ \varkappa_{665} &= (0.15 \cdot 3.091) + (0.40 \cdot 2.615) + (0.45 \cdot 2.074) = 2.443 \text{ om}^{-1} \text{cm}^{-1} \\ \varkappa_{715} &= (0.15 \cdot 3.279) + (0.40 \cdot 2.785) + (0.45 \cdot 1.282) = 2.633 \text{ om}^{-1} \text{cm}^{-1} \end{aligned}$

Экспериментальная энтальпия плавления смеси равна 262 кДж/кг, меньше расчетной на 11 %.

Система NaCl-NaBr-Na₂SO₄. Относится к типу систем с непрерывными рядами твердых растворов. Имеет точку M₄ с минимальной температурой плавления 613°C, смеси (мол. %): 35.0% NaCl, 35.0% NaBr, 30.0% Na₂SO₄. Рассчитанные температура и состав минимума по методу Мартыновой следующие: вариант 1 – 32.9% NaCl, 32.9% NaBr, 34.2% Na₂SO₄, температура плавления 517°C. Отличается от экспериментальных данных по составу в среднем на 4.2% а по температуре максимально на 10.8%; вариант 2 – 33.0% NaCl, 45.9% NaBr, 21.1% Na₂SO₄, температура плавления 564°C. Отличается на 10.9% по составу и на 5,6% по температуре (рис. 4.3).

Ликвидус системы представлен двумя полями кристаллизации, разделенными кривой моновариантного равновесия: е₂₀Na₂CO₃e₁₆ – поверхность кристаллизации компонента β-Na₂SO₄, равновесие L≓β-Na₂SO₄ (дивариантное двухфазное равновесие);

2. е₂₀NaClNaBre₁₆ – поверхность кристаллизации твёрдого раствора замещения NaCl_xBr_{1-x}, равновесие L≈NaCl_xBr_{1-x} (дивариантное двухфазное равновесие);

3. $e_{20}e_{17}$ – L \rightleftharpoons β-Na₂SO₄ + NaCl_xBr_{1-x} (моновариантное трехфазное равновесие);

На рисунке 4.3 нанесены расчетные данные максимума M₄ и экспериментальные данные на кривой моновариантного равновесия e₂₀e₁₇. Проекция фазового комплекса примерно равновесными полями кристаллизации NaCl_xBr_{1-x} и β-Na₂SO₄. Кривая ДТА охлаждения смеси представлена на рисунке 4.4.

Рисунок 4.3- Фазовый треугольник системы NaCl-NaBr-Na₂SO₄

Для состава трехкомпонентного минимума M₄ системы NaCl-NaBr-Na₂SO₄ рассчитали свойства, необходимые для определения области прикладного применения.

1. Пересчитаем мол. % в мас. %:

$$\omega_{NaCl} \frac{0.35 \cdot 58.44}{(0.35 \cdot 58.44) + (0.35 \cdot 102.894) + (0.30 \cdot 142.04)} \cdot 100 = 21 \text{ mac. \%}$$
$$\omega_{NaBr} = 36 \text{ mac. \%}$$

Рисунок 4.4 – Кривая ДТА охлаждения смеси с минимальной температурой плавления системы NaCl-NaBr-Na₂SO₄

2. Рассчитаем удельную и мольную энтальпии плавления по правилу аддитивности:

$$\Delta_{\rm m}$$
H = (0.21 · 483) + (0.36 · 255) + (0.43 · 165) = 265 кДж/кг.

$$\Delta H = (0.21 \cdot 28.2) + (0.36 \cdot 26.2) + (0.43 \cdot 23.4) = 25.4 кДж/моль.$$

3. Рассчитаем мольную энтропию плавления смеси:

$$\Delta_{\rm m}{
m S}={25.42\over 886}=0.0287~{
m K}{
m Д}{
m ж}/{
m моль}\cdot{
m K}=28.7~{
m Д}{
m ж}/{
m моль}\cdot{
m K}$$

4. Рассчитаем удельную теплоемкость по правилу аддитивности:
C_{см} = (0.21 · 49.71) + (0.36 · 51.40) + (0.43 · 127.3) = 83.68 Дж/моль · К
5. Рассчитаем плотность смеси по правилу аддитивности (25°С):

$$\rho_{\rm CM} = (0.21 \cdot 2.17) + (0.36 \cdot 3.21) + (0.43 \cdot 2.7) = 2.77 \frac{\Gamma}{\rm CM^3} = 2770 \frac{\rm Kr}{\rm M^3}$$

6. Рассчитаем удельную объемную энтальпию плавления с учетом данных таблицы 4.2.:

$$\Delta_{\rm m} {\rm H}_{\rm V} = \Delta_{\rm m} {\rm H} \cdot \rho_{\rm cm} = 209 \cdot 2770 = 578930 \ \frac{\kappa \Delta \pi}{M^3} = 579 \frac{M \Delta \pi}{M^3}$$

8. Рассчитаем значения электропроводности для индивидуальных компонентов:

$$\begin{split} \varkappa_{\text{NaCl}} &= -2.4975 + 8.0431 \cdot 10^{-3}\text{T} - 2.2227 \cdot 10^{-6} \cdot \text{T}^2 \\ \varkappa_{\text{NaCl}(613)} &= 2.883 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaCl}(663)} &= 3.084 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaCl}(713)} &= 3.272 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaBr}} &= 9.097 \text{exp}(-2324/1.98717 \cdot \text{T}) \\ \varkappa_{\text{NaBr}(613)} &= 2,430 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaBr}(663)} &= 2.608 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaBr}(713)} &= 2.779 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{SO}_4} &= 11.893 \text{exp}(-3819.9/1.98717 \cdot \text{T}) \\ \varkappa_{\text{Na}_2\text{SO}_4(613)} &= 1,358 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{SO}_4(663)} &= 1.525 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{SO}_4(713)} &= 1.693 \text{ Om}^{-1}\text{cm}^{-1} \end{split}$$

9. Рассчитаем удельную электропроводность смеси по правилу аддитивности:

$$\begin{aligned} \varkappa_{613} &= (0.21 \cdot 2.883) + (0.36 \cdot 2.430) + (0.43 \cdot 1.358) = 2.064 \ \mathrm{Om^{-1} cm^{-1}} \\ \varkappa_{663} &= (0.21 \cdot 3.084) + (0.36 \cdot 2.608) + (0.43 \cdot 1.525) = 2.242 \ \mathrm{Om^{-1} cm^{-1}} \\ \varkappa_{713} &= (0.21 \cdot 3.372) + (0.36 \cdot 2.779) + (0.43 \cdot 1.693) = 2.416 \ \mathrm{Om^{-1} cm^{-1}} \end{aligned}$$

Экспериментальная энтальпия плавления смеси равна 209 кДж/кг, меньше расчетной по аддитивности на 21 %.

Система NaI-Na₂CO₃-Na₂SO₄. Относится к типу систем с непрерывными рядами твердых растворов. Имеет точку М₉ с минимальной температурой плавления 576°C, состав смеси 70.0% NaI, 21.0% Na₂CO₃, 9.0%

Na₂SO₄. Рассчитанные температура и состав минимума по методу Мартыновой следующие: вариант – 72.9% NaI, 16.3% Na₂CO₃, 10.8% Na₂SO₄, температура плавления 574.9°C. Отличается от экспериментальных данных в среднем по составу на 4.1% а по температуре максимально на 1.4%; вариант 2 – 75.9% NaI, 8.5% Na₂CO₃, 15.6% Na₂SO₄, температура плавления 584,0 °C. Отличается на 12.5% в среднем по составу и на 0,9% максимально по температуре (рис. 4.5).

Ликвидус системы представлен двумя полями кристаллизации и кривой моновариантного равновесия:

 е₂₀NaIe₂₁ – поверхность кристаллизации компонента NaI, равновесие L → NaI (дивариантное двухфазное равновесие);

2. $e_{20}Na_2CO_3Na_2SO_4e_{21}$ – поверхность кристаллизации твёрдого раствора замещения $Na_2(SO_4)_x(CO_3)_{1-x}$, равновесие $L \rightleftharpoons Na_2(SO_4)_x(CO_3)_{1-x}$ (дивариантное двухфазное равновесие);

3. $e_{20}e_{21}$ – L≓NaI + Na₂(SO₄)_x(CO₃)_{1-х} (моновариантное трехфазное равновесие).

Рисунок 4.5 – Фазовый треугольник системы NaI-Na₂CO₃-Na₂SO₄

На рисунке 4.5 нанесены расчетные данные минимума М₉ и экспериментальные данные на кривой моновариантного равновесия e₂₀e₂₁. На

проекции фазового комплекса максимальное поле кристаллизации принадлежит полю непрерывных твердых растворов Na₂(SO₄)_x(CO₃)_{1-x}. Кривая ДТА охлаждения смеси представлена на рисунке 4.6.

Для состава трехкомпонентного минимума М₉ системы NaI-Na₂CO₃-Na₂SO₄ рассчитали свойства, необходимые для определения области прикладного применения.

Рисунок 4.6 – Кривая ДТА охлаждения смеси с минимальной температурой плавления системы NaI-Na₂CO₃-Na₂SO₄

1. Пересчитаем мол. % в мас. %:

$$\begin{split} \omega_{\text{NaI}} & \frac{0.70 \cdot 149.89}{(0.70 \cdot 149.89) + (0.21 \cdot 105.99) + (0.09 \cdot 142.04)} \cdot 100 = 75 \text{ mac. \%} \\ & \omega_{\text{Na}_2\text{CO}_3} = 16 \text{ mac. \%} \\ & \omega_{\text{Na}_2\text{SO}_4} = 9 \text{ mac. \%} \end{split}$$

2. Рассчитаем удельную энтальпию плавления по правилу аддитивности:

 $\Delta_{\rm m}$ H = (0.75 · 158) + (0.16 · 264) + (0.09 · 165) = 176 кДж/кг.

 $\Delta H = (0.75 \cdot 23.70) + (0.16 \cdot 28.0) + (0.09 \cdot 23.4) = 24.4$ кДж/моль.

3. Рассчитаем мольную энтропию плавления:

$$\Delta_{\rm m}{
m S}={37.08\over 849}=0.0437~{
m к}{
m Д}{
m ж}/{
m моль}\cdot{
m K}=43.7~{
m Д}{
m ж}/{
m моль}\cdot{
m K}$$

4. Рассчитаем удельную теплоемкость по правилу аддитивности:

 $C_{CM} = (0.75 \cdot 52.22) + (0.16 \cdot 112.30) + (0.09 \cdot 127.30) = 68.59 Дж/моль · К$ 5. Рассчитаем плотность смеси (25°С):

 $\rho_{\rm CM} = (0.75 \cdot 3.66) + (0.16 \cdot 2.53) + (0.09 \cdot 2.70) = 2.77 \frac{\Gamma}{\rm cm^3} = 2770 \frac{\rm Kr}{\rm m^3}.$

6. Рассчитаем удельную объемную энтальпию плавления с учетом данных таблицы 4.2.:

$$\Delta_{\rm m} {\rm H}_{\rm V} = \Delta_{\rm m} {\rm H} \cdot \rho_{\rm cm} = 179 \cdot 2770 = 495830 \ \frac{{\rm K} {\rm J} {\rm K}}{{\rm M}^3} = 496 \frac{{\rm M} {\rm J} {\rm K}}{{\rm M}^3}$$

7. Рассчитаем значения электропроводности для индивидуальных компонентов:

$$\begin{split} \varkappa_{\text{NaI}} &= -2.8948 + 7.5861 \cdot 10^{-3}\text{T} - 2.2381 \cdot 10^{-6} \cdot \text{T}^2 \\ \varkappa_{\text{NaI}(576)} &= 1.933 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaI}(626)} &= 2.116 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaI}(676)} &= 2.289 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{CO}_3} &= 13.758\text{exp}(-3527/1.98717 \cdot \text{T}) \\ \varkappa_{\text{Na}_2\text{CO}_3(576)} &= 1,701 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{CO}_3(626)} &= 1.910 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{CO}_3(676)} &= 2.119 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{SO}_4} &= 11.893\text{exp}(-3819.9/1.98717 \cdot \text{T}) \\ \varkappa_{\text{Na}_2\text{SO}_4(576)} &= 1,236 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{SO}_4(626)} &= 1.402 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{SO}_4(626)} &= 1.402 \text{ Om}^{-1}\text{cm}^{-1} \end{split}$$

8. Рассчитаем удельную электропроводность смеси по методу аддитивности:

$$\varkappa_{576} = (0.75 \cdot 1.933) + (0.16 \cdot 1.701) + (0.09 \cdot 1.236) = 1.833 \, \mathrm{Om^{-1} cm^{-1}}$$

 $\varkappa_{626} = (0.75 \cdot 2.116) + (0.16 \cdot 1.910) + (0.09 \cdot 1.402) = 2.289 \text{ Om}^{-1}\text{cm}^{-1}$ $\varkappa_{676} = (0.75 \cdot 2.289) + (0.16 \cdot 2.119) + (0.09 \cdot 1.569) = 2.304 \text{ Om}^{-1}\text{cm}^{-1}$

Экспериментальная энтальпия плавления смеси равна 179 кДж/кг, меньше от расчетной на 20 %.

Система NaI-NaBr-Na₂SO₄. Относится к типу систем с непрерывными рядами твердых растворов. Имеет точку M_8 с минимальной температурой плавления 582°C, состав смеси 48.0% NaI, 27.0% NaBr и 25.0% Na₂SO₄. Рассчитанные температура и состав минимума по методу Мартыновой следующие: вариант 1 – 65.0% NaI, 21.7% NaBr, 13.3% Na₂SO₄, температура плавления 585°C. Отличается от экспериментальных данных в среднем по составу на 17.0% а по температуре максимально на 0.8%; вариант – 55.7% NaI, 26.2% NaBr, 18.1% Na₂SO₄, температура плавления 503 °C. Отличается на 7.7% в среднем по составу и на 9,2% максимально по температуре (рис. 4.7). Кривая ДТА охлаждения смеси представлена на рисунке 4.8.

Рисунок 4.7 – Фазовый треугольник системы NaI-NaBr-Na₂SO₄

Рисунок 4.8 – Кривая ДТА охлаждения смеси с минимальной температурой плавления системы NaI-NaBr-Na₂SO₄

Ликвидус системы представлен двумя полями кристаллизации, разделенных кривой моновариантного равновесия:

 е₂₀Na₂SO₄e₁₇ – поверхность кристаллизации компонента β-Na₂SO₄, равновесие L ≓ β-Na₂SO₄ (дивариантное двухфазное равновесие);

2. $e_{20}Na_2CO_3Na_2SO_4e_{17}$ – поверхность кристаллизации твёрдого раствора замещения $NaCl_xBr_{1-x}$, равновесие $L \rightleftharpoons NaI_xBr_{1-x}$ (дивариантное двухфазное равновесие);

3. $e_{20}e_{17}$ – L \rightleftharpoons NaI + NaI_xBr_{1-x} (моновариантное трехфазное равновесие).

На рисунке 4.7 нанесены расчетные данные минимума M₈ и экспериментальные данные на кривой моновариантного равновесия e₂₀e₁₇. На проекции находятся примерно в равновесии поля кристаллизации компонента β-Na₂SO₄ и твердого раствора NaI_xBr_{1-x}.

Для состава трехкомпонентного минимума M₈ системы NaI-NaBr-Na₂SO₄ рассчитали свойства, необходимые для определения области прикладного применения. 1. Пересчитаем мол. % в мас. %:

$$\begin{split} \omega_{\text{NaI}} & \frac{0.48 \cdot 149.89}{(0.48 \cdot 149.89) + (0.27 \cdot 102.89) + (0.25 \cdot 142.04)} \cdot 100 = 53 \text{ mac. \%} \\ & \omega_{\text{NaBr}} = 21 \text{ mac. \%} \\ & \omega_{\text{Na}_2\text{SO}_4} = 26 \text{ mac. \%} \end{split}$$

2. Рассчитаем удельную энтальпию плавления по правилу аддитивности:

 $\Delta_{\rm m}$ H = (0.53 · 158) + (0.21 · 255) + (0.26 · 165) = 180 кДж/кг. Δ H = (0.53 · 23.7) + (0.21 · 26.2) + (0.26 · 23.4) = 24.2 кДж/моль. 3. Рассчитаем мольную энтропию плавления

$$\Delta_{\rm m} {\rm S} = \frac{24.15}{855} = 0.0282 \ {\rm кДж/моль} \cdot {\rm K} = 28.2 \ {\rm Дж/моль} \cdot {\rm K}$$

4. Рассчитаем удельную теплоемкость по правилу аддитивности:

 $C_{\text{см}} = (0.53 \cdot 52.22) + (0.21 \cdot 51.40) + (0.26 \cdot 127.30) = 71.57$ Дж/моль · К

5. Рассчитаем плотность смеси по правилу аддитивности (25°С): $\rho_{\rm CM} = (0.53 \cdot 3.66) + (0.21 \cdot 3.21) + (0.26 \cdot 2.70) = 3.32 \frac{\Gamma}{{\rm CM}^3} = 3320 \frac{{\rm K}\Gamma}{{\rm M}^3}.$

6. Рассчитаем удельную объемную энтальпию плавления с учетом данных таблицы 4.2.:

$$\Delta_{\rm m}{\rm H}_{\rm V} = \Delta_{\rm m}{\rm H}\cdot
ho_{\rm cm} = 165\cdot 3320 = 547800 \ \frac{{\rm kJm}}{{\rm m}^3} = 548 \frac{{
m MJm}}{{
m m}^3}$$

7. Рассчитаем значения электропроводности для индивидуальных компонентов:

$$\begin{split} \varkappa_{\text{NaI}} &= -2.8948 + 7.5861 \cdot 10^{-3}\text{T} - 2.2381 \cdot 10^{-6} \cdot \text{T}^2 \\ \varkappa_{\text{NaI}(582)} &= 1.955 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaI}(632)} &= 2.138 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaI}(682)} &= 2.309 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaBr}} &= 9.097\text{exp}(-2324/1.98717 \cdot \text{T}) \\ \varkappa_{\text{NaBr}(582)} &= 2.317 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaBr}(632)} &= 2.498 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaBr}(632)} &= 2.673 \text{ Om}^{-1}\text{cm}^{-1} \end{split}$$

$$\begin{aligned} \varkappa_{\text{Na}_2\text{SO}_4} &= 11.893 \text{exp}(-3819.9/1.98717 \cdot \text{T}) \\ \varkappa_{\text{Na}_2\text{SO}_4(582)} &= 1,236 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{SO}_4(632)} &= 1.423 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{SO}_4(682)} &= 1.589 \text{ Om}^{-1}\text{cm}^{-1} \end{aligned}$$

8. Рассчитаем удельную электропроводность смеси по методу аддитивности:

 $\begin{aligned} \varkappa_{582} &= (0.53 \cdot 1.955) + (0.21 \cdot 2.317) + (0.26 \cdot 1.236) = 1.844 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{632} &= (0.53 \cdot 2.138) + (0.21 \cdot 2.498) + (0.26 \cdot 1.423) = 2.028 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{682} &= (0.53 \cdot 2.309) + (0.21 \cdot 2.673) + (0.26 \cdot 1.589) = 2.198 \text{ Om}^{-1}\text{cm}^{-1} \end{aligned}$

Экспериментальная энтальпия плавления смеси равна 165 кДж/кг, меньше расчетной на 9 %.

Система KI-KBr-K₂CO₃. Относится к типу систем с непрерывными рядами твердых растворов. Имеет точку M_{14} с минимальной температурой плавления 582°С, состав смеси 40.0% KBr, 40.0% KI, 20.0% K₂CO₃ (рис. 4.5). Рассчитанные температура и состав минимума по методу Мартыновой следующие: вариант 1 – 43.8% KBr, 43.8% KI, 12.4% K₂CO₃, температура плавления 590°С. Отличается от экспериментальных данных по в среднем составу на 7.6% а по температуре максимально на 0.9%; вариант – 2: 41.1% KBr, 41.1% KI, 17.7% K₂CO₃, температура плавления 586 °C. Отличается на 2.3% в среднем по составу и на 0,4% максимально по температуре (рис. 4.9).

На рисунке 4.9 нанесены расчетные данные минимума M₁₄ и экспериментальные данные на кривой моновариантного равновесия e₃₁e₂₇. На проекции фазового комплекса доминирует поле кристаллизации компонента β-K₂CO₃. Ликвидус системы состоит из двух полей кристаллизации, разделенных кривой моновариантного равновесия:

1. $e_{31}K_2CO_3e_{27}$ – поверхность кристаллизации компонента β -K₂CO₃, равновесие L \rightleftharpoons β -K₂CO₃ (дивариантное двухфазное равновесие);

2. e_{31} KIKBr e_{27} — поверхность кристаллизации твёрдого раствора замещения KBr_xI_(1-x), равновесие L \rightleftharpoons KBr_xI_(1-x) (дивариантное двухфазное равновесие);

3. $e_{31}e_{27}$ – L \rightleftharpoons K₂CO₃+ KBr_xI_(1-x) (моновариантное трехфазное равновесие).

Рисунок 4.9 – Фазовый треугольник системы KI-KBr-K₂CO₃

Рисунок 4.10 – Кривая ДТА охлаждения смеси с минимальной температурой плавления системы KI-KBr-K₂CO₃

Для состава трехкомпонентного минимума M₁₄ системы KI-KBr-K₂CO₃ рассчитали свойства, необходимые для определения области прикладного применения.

1. Пересчитаем мол. % в мас. %:

$$\omega_{\text{KI}} \frac{0.40 \cdot 166.0}{(0.40 \cdot 166.0) + (0.40 \cdot 119.0) + (0.2 \cdot 138.21)} \cdot 100 = 47 \text{ mac. \%}$$
$$\omega_{\text{KBr}} = 33 \text{ mac. \%}$$
$$\omega_{\text{K2CO3}} = 20 \text{ mac. \%}$$

2. Рассчитаем удельную энтальпию плавления по правилу аддитивности:

$$\Delta_{\rm m}$$
H = (0.47 · 145) + (0.33 · 214) + (0.2 · 201) = 179 кДж/кг.
 Δ H = (0.47 · 24.0) + (0.33 · 25.5) + (0.2 · 27.8) = 25.3 кДж/моль.

3. Рассчитаем мольную энтропию плавления

$$\Delta_{\rm m}{
m S}={25.26\over 855}=0.0295~{
m к}{
m Д}{
m ж}/{
m моль}\cdot{
m K}=29.5~{
m Д}{
m ж}/{
m моль}\cdot{
m K}$$

4. Рассчитаем удельную теплоемкость по правилу аддитивности (25°С):
С_{см} = (0.47 · 52.90) + (0.33 · 52.30) + (0.2 · 115.70) = 65.26 Дж/моль · К

5. Рассчитаем плотность смеси по правилу аддитивности (25°С):

$$\rho_{\rm CM} = (0.47 \cdot 3.12) + (0.4 \cdot 2.75) + (0.2 \cdot 2.43) = 3.05 \frac{\Gamma}{\rm cm^3} = 3750 \frac{\rm Kr^3}{\rm m^3}.$$

6. Рассчитаем удельную объемную энтальпию плавления с учетом данных таблицы 4.2.:

$$\Delta_{\rm m} {\rm H}_{\rm V} = \Delta_{\rm m} {\rm H} \cdot \rho_{\rm cm} = 152 \cdot 3750 = 570000 \ \frac{\kappa \beta \kappa}{M^3} = 570 \frac{M \beta \kappa}{M^3}$$

7. Рассчитаем значения электропроводности для индивидуальных компонентов:

$$\begin{split} \varkappa_{\rm KI} &= -6.1952 + 12.6232 \cdot 10^{-3} {\rm T} - 5.0591 \cdot 10^{-6} \cdot {\rm T}^2 \\ \varkappa_{\rm KI(582)} &= 0.899 \; {\rm Om^{-1} cm^{-1}} \\ \varkappa_{\rm KI(632)} &= 1.085 \; {\rm Om^{-1} cm^{-1}} \\ \varkappa_{\rm KI(682)} &= 1.246 \; {\rm Om^{-1} cm^{-1}} \\ \varkappa_{\rm KBr} &= -6.6001 + 13.1823 \cdot 10^{-3} {\rm T} - 5.0051 \cdot 10^{-6} \cdot {\rm T}^2 \end{split}$$

$$\begin{split} \varkappa_{\text{KBr}(582)} &= 1.012 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{KBr}(632)} &= 1.231 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{KBr}(682)} &= 1.424 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{K}_2\text{CO}_3} &= 11.027\text{exp}(-3941/1.98717 \cdot \text{T}) \\ \varkappa_{\text{K}_2\text{CO}_3(582)} &= 1,084 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{K}_2\text{CO}_3(632)} &= 1.232 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{K}_2\text{CO}_3(682)} &= 1.382 \text{ Om}^{-1}\text{cm}^{-1} \end{split}$$

8. Рассчитаем удельную электропроводность смеси по правилу аддитивности:

 $\begin{aligned} \varkappa_{582} &= (0.47 \cdot 0.899) + (0.33 \cdot 1.012) + (0.20 \cdot 1.083) = 0.943 \,\,\mathrm{Om^{-1} cm^{-1}} \\ \varkappa_{632} &= (0.47 \cdot 1.085) + (0.33 \cdot 1.231) + (0.20 \cdot 1.232) = 1.162 \,\,\mathrm{Om^{-1} cm^{-1}} \\ \varkappa_{682} &= (0.47 \cdot 1.246) + (0.33 \cdot 1.424) + (0.20 \cdot 1.382) = 1.330 \,\,\mathrm{Om^{-1} cm^{-1}} \end{aligned}$

Экспериментальная энтальпия плавления смеси равна 152 кДж/кг, меньше от расчетной на 14,9 %.

Система KI-KBr-K₂SO₄. Относится к типу систем с непрерывными рядами твердых растворов. Имеет точку M_{16} с минимальной температурой плавления 620°C, состав смеси 43.4% KI, 41.6% KBr, 15.0% K₂SO₄. Спрогнозированные температура и состав минимума по методу Мартыновой следующие: вариант 1 – 46.2% KBr, 46.2% KI, 7.5% K₂SO₄, температура плавления 635°C. Отличается от экспериментальных данных в среднем по составу на 1.6% а по температуре максимально на 2%; вариант 2 – 43.6% KBr, 43.6% KI, 12.7% K₂SO₄, температура плавления 645 °C. Отличается на 2.3% в среднем по составу и на 2.8% максимально по температуре (рис. 4.11).

На рисунке 4.11 нанесены расчетные данные минимума M₁₆ и экспериментальные данные на кривой моновариантного равновесия e₃₂e₂₈. На проекции фазового комплекса доминирует поле кристаллизации компонента β-K₂SO₄.

Ликвидус системы представлен двумя полями кристаллизации и кривой моновариантного равновесия:

Рисунок 4.11 – Фазовый треугольник системы KI-KBr-K₂SO₄

1. $e_{32}K_2CO_3e_{28}$ – поверхность кристаллизации компонента β -K₂SO₄, равновесие L \rightleftharpoons β -K₂SO₄ (дивариантное двухфазное равновесие);

2. е₃₂КІКВге₂₈ – поверхность кристаллизации твёрдого раствора замещения KBr_xI_(1-x), равновесие L≓KBr_xI_(1-x) (дивариантное двухфазное равновесие);

3. $e_{32}e_{28}$ – L \rightleftharpoons K₂SO₄ + KBr_xI_(1-x) (моновариантное трехфазное равновесие).

Кривая ДТА охлаждения смеси представлена на рисунке 4.12.

Для состава трехкомпонентного минимума M₁₆ системы KI-KBr-K₂SO₄ рассчитали свойства, необходимые для определения области прикладного применения.

1. Пересчитаем мол. % в мас. %:

$$\omega_{\text{KI}} \frac{0.434 \cdot 166.0}{(0.434 \cdot 166.0) + (0.42 \cdot 119.0) + (0.15 \cdot 174.26)} \cdot 100 = 49 \text{ mac. \%}$$
$$\omega_{\text{KBr}} = 34 \text{ mac. \%}$$
$$\omega_{\text{K}_2\text{SO}_4} = 17 \text{ mac. \%}$$

Рисунок 4.12 – Кривая ДТА охлаждения смеси с минимальной температурой плавления системы KI-KBr-K₂SO₄

2. Рассчитаем удельную и мольную энтальпии плавления по правилу аддитивности:

 $\Delta_{\rm m}$ H = (0.49 · 145) + (0.34 · 214) + (0.17 · 211) = 180 кДж/кг. Δ H = (0.49 · 24.0) + (0.34 · 25.5) + (0.17 · 36.8) = 26.7 кДж/моль.

3. Рассчитаем мольную энтропию плавления

$$\Delta_{\rm m} {\rm S} = \frac{26.68}{893} = 0.0298 \ {\rm кДж/моль} \cdot {\rm K} = 29.88 \ {\rm Дж/моль} \cdot {\rm K}$$

4. Рассчитаем удельную теплоемкость по правилу аддитивности:
 C_{см} = (0.49 · 52.90) + (0.34 · 52.30) + (0.17 · 130.10) = 65.82 Дж/моль · К

5. Рассчитаем плотность смеси по правилу аддитивности (25°С):

$$\rho_{\rm CM} = (0.49 \cdot 3.12) + (0.34 \cdot 2.75) + (0.17 \cdot 2.66) = 2.91 \frac{\Gamma}{\rm CM^3} = 2910 \frac{\rm Kr}{\rm M^3}$$

6. Рассчитаем удельную объемную энтальпию плавления с учетом данных таблицы 4.2.:

$$\Delta_{\rm m} {\rm H}_{\rm V} = \Delta_{\rm m} {\rm H} \cdot \rho_{\rm cm} = 150 \cdot 2910 = 436500 \ \frac{\kappa \pi}{M^3} = 437 \frac{M \pi}{M^3}$$

7. Рассчитаем значения электропроводности для индивидуальных компонентов:

$$\begin{split} \varkappa_{\rm KI} &= -6.1952 + 12.6232 \cdot 10^{-3} {\rm T} - 5.0591 \cdot 10^{-6} \cdot {\rm T}^2 \\ \varkappa_{\rm KI(620)} &= 1.043 \ {\rm Om}^{-1} {\rm cm}^{-1} \\ \varkappa_{\rm KI(670)} &= 1.209 \ {\rm Om}^{-1} {\rm cm}^{-1} \\ \varkappa_{\rm KI(720)} &= 1.351 \ {\rm Om}^{-1} {\rm cm}^{-1} \\ \varkappa_{\rm KBr} &= -6.6001 + 13.1823 \cdot 10^{-3} {\rm T} - 5.0051 \cdot 10^{-6} \cdot {\rm T}^2 \\ \varkappa_{\rm KBr(620)} &= 1.180 \ {\rm Om}^{-1} {\rm cm}^{-1} \\ \varkappa_{\rm KBr(670)} &= 1.380 \ {\rm Om}^{-1} {\rm cm}^{-1} \\ \varkappa_{\rm KBr(720)} &= 1.555 \ {\rm Om}^{-1} {\rm cm}^{-1} \\ \varkappa_{\rm K250_4} &= -23.5770 + 3.57269 \cdot 10^{-3} {\rm T} - 1.24807 \cdot 10^{-5} \cdot {\rm T}^2 \\ \varkappa_{\rm K_2S0_4(620)} &= 0.726 \ {\rm Om}^{-1} {\rm cm}^{-1} \\ \varkappa_{\rm K_2S0_4(670)} &= 0.980 \ {\rm Om}^{-1} {\rm cm}^{-1} \\ \varkappa_{\rm K_2S0_4(670)} &= 1.231 \ {\rm Om}^{-1} {\rm cm}^{-1} \end{split}$$

8. Рассчитаем удельную электропроводность смеси по методу аддитивности:

 $\begin{aligned} \varkappa_{620} &= (0.49 \cdot 1.043) + (0.34 \cdot 1.190) + (0.17 \cdot 0.726) = 1.015 \text{ Om}^{-1} \text{cm}^{-1} \\ \varkappa_{670} &= (0.49 \cdot 1.209) + (0.34 \cdot 1.380) + (0.17 \cdot 0.980) = 1.146 \text{ Om}^{-1} \text{cm}^{-1} \\ \varkappa_{720} &= (0.49 \cdot 1.351) + (0.34 \cdot 1.555) + (0.17 \cdot 1.231) = 1.399 \text{ Om}^{-1} \text{cm}^{-1} \end{aligned}$

Экспериментальная энтальпия плавления смеси равна 150 кДж/кг, меньше расчетной на 19 %.

Система LiCl-LiBr-Li₂CO₃-Li₂SO₄. Относится к типу систем с непрерывными рядами твердых растворов. Имеет точку М^{\bullet} с минимальной температурой плавления 398°С, состав смеси 22.5 % LiCl, 22.5% LiBr; 40.0% Li₂CO₃, 15.0% Li₂SO₄ (рис. 4.13).

Кривая ДТА охлаждения смеси представлена на рисунке 4.14.

Рисунок 4.13 – Схема поверхностей кристаллизации в тетраэдре

Рисунок 4.14 – Кривая ДТА охлаждения смеси с минимальной температурой плавления системы LiCl-LiBr-Li₂CO₃-Li₂SO₄

Тетраэдр системы представлен тремя объемами кристаллизации:

1. Li₂SO₄e₆M₂e₈E₅e₄E₄M[■] – объем кристаллизации Li₂SO₄;

2. LiBre₅M₁e₇LiCle₈e₆E₄E₅M^{\blacksquare} – объем кристаллизации LiCl_xBr_{1-x};

3. Li₂CO₃e₇M₁e₅E₅e₄E₄M[■] – объем кристаллизации Li₂CO₃

Три объема кристаллизации пересекается тремя поверхностями кристаллизациями:

1. $E_5E_4e_7M_1e_5M^{\bullet}$ – фазовое равновесие L \rightleftarrows LiCl_xBr_{1-x} + Li₂CO₃

2. $e_4E_4E_5M^{\bullet}$ – фазовое равновесие L \rightleftharpoons Li₂SO₄ + Li₂CO₃

3. $E_5e_6M_2e_8E_4M^■$ – фазовое равновесие L \rightleftharpoons LiCl_xBr_{1-x} + Li₂SO₄

Для состава четырехкомпонентного минимума М[■] 398 системы LiCl-LiBr-Li₂CO₃-Li₂SO₄ рассчитали свойства, необходимые для определения области прикладного применения.

1. Пересчитаем мол. % в мас. %:

$$\omega_{\text{LiCl}} \frac{0.225 \cdot 43.394}{(0.225 \cdot 42.39) + (0.225 \cdot 86.845) + (0.40 \cdot 174.26) + (0.15 \cdot 109.94)}{\cdot 100 = 13 \text{ mac. \%}}$$

$$\omega_{\text{LiBr}} = 26$$
 мас. %
 $\omega_{\text{Li}_2\text{CO}_3} = 39$ мас. %
 $\omega_{\text{Li}_2\text{SO}_4} = 22$ мас. %

2. Рассчитаем удельную и мольную энтальпии плавления по правилу аддитивности:

3. Рассчитаем мольную энтропию плавления

$$\Delta_{\rm m}{
m S}=\,rac{12.69}{671}=0.01892\;{
m \kappa}{
m Д}{
m ж}/{
m моль}\cdot{
m K}=\,18.92\;{
m Д}{
m ж}/{
m моль}\cdot{
m K}$$

4. Рассчитаем удельную теплоемкость по правилу аддитивности:

5. Рассчитаем плотность смеси по правилу аддитивности (25°С):

$$\rho_{\rm CM} = (0.13 \cdot 2,07) + (0.26 \cdot 3.46) + (0.39 \cdot 2.11) + (0.22 \cdot 2.22) =$$

$$= 2.48 \frac{\Gamma}{\rm CM^3} = 2480 \frac{\rm K\Gamma}{\rm M^3}.$$

6. Рассчитаем удельную объемную энтальпию плавления с учетом данных таблицы 4.2.:

$$\Delta_{\rm m} {\rm H}_{\rm V} = \Delta_{\rm m} {\rm H} \cdot \rho_{\rm \scriptscriptstyle CM} = 184 \cdot 2480 = 456320 \ \frac{\kappa \beta_{\rm M}}{{}_{\rm M}{}^3} = 456 \frac{{\rm M}\beta_{\rm M}}{{}_{\rm M}{}^3}$$

7. Рассчитаем значения электропроводности для индивидуальных компонентов:

$$\begin{split} \varkappa_{\text{LiCl}} &= -2.0647 + 12.1271 \cdot 10^{-3}\text{T} - 3.7641 \cdot 10^{-6} \cdot \text{T}^2 \\ \varkappa_{\text{LiCl}(398)} &= 4.378 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{LiCl}(448)} &= 4.722 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{LiCl}(498)} &= 5.048 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{LiBr}} &= -1.1362 + 8.6159 \cdot 10^{-3}\text{T} - 1.86221 \cdot 10^{-6} \cdot \text{T}^2 \\ \varkappa_{\text{LiBr}(398)} &= 3.807 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{LiBr}(398)} &= 3.807 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{LiBr}(498)} &= 4.102 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{LiBr}(498)} &= 4.399 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{LiBr}(498)} &= 4.399 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Li}_2\text{CO}_3} &= 0.9877 - 1.3529 \cdot 10^{-3}\text{T} - 4.3873 \cdot 10^{-6} \cdot \text{T}^2 \\ \varkappa_{\text{Li}_2\text{CO}_3(398)} &= 4.056 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Li}_2\text{CO}_3(448)} &= 4.244 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Li}_2\text{CO}_3(498)} &= 4.639 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Li}_2\text{SO}_4} &= -24.544 + 4.4630 \cdot 10^{-2}\text{T} - 1.7251 \cdot 10^{-5} \cdot \text{T}^2 \\ \varkappa_{\text{Li}_2\text{SO}_4(398)} &= 2.364 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Li}_2\text{SO}_4(448)} &= 2.462 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Li}_2\text{SO}_4(498)} &= 2.671 \text{ Om}^{-1}\text{cm}^{-1} \end{split}$$

8. Рассчитаем удельную электропроводность смеси по правилу аддитивности:

$$\kappa_{620} = (0.13 \cdot 4.378) + (0.26 \cdot 3.807) + (0.39 \cdot 4.056) + (0.22 \cdot 2.364)$$
$$= 3.661 \text{ Om}^{-1} \text{cm}^{-1}$$
$$\kappa_{670} = (0.13 \cdot 4.722) + (0.26 \cdot 4.108) + (0.39 \cdot 4.244) + (0.22 \cdot 2.462)$$

$$= 3.878 \text{ Om}^{-1}\text{cm}^{-1}$$

$$\kappa_{720} = (0.13 \cdot 5.048) + (0.26 \cdot 4.399) + (0.39 \cdot 4.639) + (0.22 \cdot 2.671)$$

 $= 4.314 \text{ Om}^{-1} \text{ cm}^{-1}$

Экспериментальная энтальпия плавления смеси равна 164 кДж/кг, меньше расчетной на 8 %.

Система NaCl-NaBr-Na₂CO₃-Na₂SO₄. Относится к типу систем с непрерывными рядами твердых растворов. Имеет точку с минимальной температурой плавления. Четырехкомпонентный минимум имеет состав 28 % NaCl, 28 % NaBr, 25 % Na₂CO₃, 19 % Na₂SO₄. Температура плавления смеси 585°C (рис. 4.15). Кривая ДТА охлаждения представлена на рисунке 4.16. Тетраэдр системы представлен двумя объемами кристаллизации:

1. NaBre₁₆e₂₀NaCl – объем кристаллизации NaCl_xBr_{1-x}, L \rightleftharpoons NaCl_xBr_{1-x} (двухфазное тривариантное равновесие);

Na₂SO₄e₁₇e₂₀e₁₆Na₂CO₃e₁₆e₁₉ – объем кристаллизации Na₂(CO₃)_x(SO₄)_{1-x}
 (двухфазное тривариантное равновесие);

Два объема кристаллизации пересекается одной поверхностью:

1. $e_{19}e_{17}e_{2}e_{16}$ – трехфазное моновариантное равновесие L≓NaCl_xBr_{1-x} + Na₂(CO₃)_x(SO₄)_{1-x}.

Для состава четырехкомпонентного минимума М 585 системы NaCl-NaBr-Na₂CO₃-Na₂SO₄ рассчитали свойства, необходимые для определения области прикладного применения.

1. Пересчитаем мол. % в мас. %:

$$\begin{split} & 0.28 \cdot 58.44 \\ \omega_{NaCl} \frac{0.28 \cdot 58.44}{(0.28 \cdot 58.44) + (0.28 \cdot 102.89) + (0.25 \cdot 105.99) + (0.19 \cdot 142.04)} \\ & \cdot 100 = 17 \text{ mac. \%} \\ & \omega_{NaBr} = 29 \text{ mac. \%} \end{split}$$

 $\omega_{\text{Na}_2\text{CO}_3} = 27$ мас. %

Рисунок 4.15 – Схема фазового тетраэдра NaCl-NaBr-Na₂CO₃-Na₂SO₄

Рисунок 4.16 – Кривая ДТА охлаждения смеси с минимальной температурой плавления системы NaCl-NaBr-Na₂CO₃-Na₂SO₄

Для состава четырехкомпонентного минимума М 585 системы NaCl-NaBr-Na₂CO₃-Na₂SO₄ рассчитали свойства, необходимые для определения области прикладного применения.

1. Пересчитаем мол. % в мас. %:

$$\begin{split} & 0.28 \cdot 58.44 \\ \omega_{NaCl} \frac{0.28 \cdot 58.44}{(0.28 \cdot 58.44) + (0.28 \cdot 102.89) + (0.25 \cdot 105.99) + (0.19 \cdot 142.04)} \cdot \\ & \cdot 100 = 17 \text{ mac. \%} \\ & \omega_{NaBr} = 29 \text{ mac. \%} \\ & \omega_{Na_2CO_3} = 27 \text{ mac. \%} \\ & \omega_{Na_2SO_4} = 27 \text{ mac. \%} \end{split}$$

2. Рассчитаем удельную и мольную энтальпии плавления по правилу аддитивности:

$$\Delta_{\rm m}$$
H = (0.17 · 483) + (0.29 · 255) + (0.27 · 264) + (0.27 · 165)
= 272 кДж/кг.
 Δ H = (0.17 · 28,2) + (0.29 · 26.2) + (0.27 · 28.0) + (0.27 · 23.4)
= 26.3 кДж/моль

3. Рассчитаем мольную энтропию плавления

$$\Delta_{\rm m} {
m S} = {26.27 \over 858} = 0.03061 \ {
m к} {
m Д} {
m ж} / {
m моль} \cdot {
m K} = 30.61 \ {
m Д} {
m ж} / {
m моль} \cdot {
m K}$$

4. Рассчитаем удельную теплоемкость по правилу аддитивности: $C_{\rm CM} = (0.17 \cdot 49,71) + (0.29 \cdot 51.40) + (0.27 \cdot 112.30) + (0.27 \cdot 127.30)$ $= 88.05 \, \text{Дж/моль} \cdot \text{K}$

5. Рассчитаем плотность смеси по правилу аддитивности (25): $\rho_{\rm CM} = (0.17 \cdot 2,16) + (0.29 \cdot 3.21) + (0.27 \cdot 2.53) + (0.27 \cdot 2.7) =$ $= 2.7 \frac{\Gamma}{\rm CM^3} = 2700 \frac{\rm K\Gamma}{\rm M^3}.$

6. Рассчитаем удельную объемную энтальпию плавления с учетом данных таблицы 4.2.:

$$\Delta_{\rm m} {\rm H}_{\rm V} = \Delta_{\rm m} {\rm H} \cdot \rho_{\rm cm} = 251 \cdot 2700 = 677700 \ \frac{{\rm K} {\rm J} {\rm K}}{{\rm M}^3} = 678 \frac{{\rm M} {\rm J} {\rm K}}{{\rm M}^3}$$

7. Рассчитаем значения электропроводности для индивидуальных компонентов:

$$\begin{split} \varkappa_{\text{NaCl}} &= -2.4975 + 8.0431 \cdot 10^{-3}\text{T} - 2.2227 \cdot 10^{-6} \cdot \text{T}^2 \\ \varkappa_{\text{NaCl}(585)} &= 2.767 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaCl}(635)} &= 2.973 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaCl}(685)} &= 3.168 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaBr}} &= 9.097\text{exp}(-2324/1.98717 \cdot \text{T}) \\ \varkappa_{\text{NaBr}(398)} &= 2.328 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaBr}(635)} &= 2.509 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaBr}(635)} &= 2.684 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}2\text{C0}_3} &= 13.758\text{exp}(-3527/1.98717 \cdot \text{T}) \\ \varkappa_{\text{Na}_2\text{C0}_3(585)} &= 1.738 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{C0}_3(635)} &= 1.948 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{C0}_3(635)} &= 2.157 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{S0}_4} &= 11.893\text{exp}(-3819.9/1.98717 \cdot \text{T}) \\ \varkappa_{\text{Na}_2\text{S0}_4(585)} &= 1.266 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{S0}_4(585)} &= 1.266 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{S0}_4(635)} &= 1.432 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{S0}_4(685)} &= 1.599 \text{ Om}^{-1}\text{cm}^{-1} \end{split}$$

8. Рассчитаем удельную электропроводность смеси по методу аддитивности:

$$\begin{aligned} \varkappa_{585} &= (0.17 \cdot 2.767) + (0.29 \cdot 2.328) + (0.27 \cdot 1.738) + (0.27 \cdot 1.266) \\ &= 1.957 \ \text{Om}^{-1} \text{cm}^{-1} \\ \varkappa_{635} &= (0.17 \cdot 2.973) + (0.29 \cdot 2.509) + (0.27 \cdot 1.948) + (0.27 \cdot 1.432) \\ &= 2.146 \ \text{Om}^{-1} \text{cm}^{-1} \\ \varkappa_{685} &= (0.17 \cdot 3.168) + (0.29 \cdot 2.684) + (0.27 \cdot 2.157) + (0.27 \cdot 1.599) \\ &= 2.331 \ \text{Om}^{-1} \text{cm}^{-1} \end{aligned}$$

Экспериментальная энтальпия плавления смеси равна 251 кДж/кг, меньше расчетной на 8 %.

Система KCl-KBr-K₂CO₃-K₂SO₄. Относится к типу систем с непрерывными рядами твердых растворов. В четырехкомпонентной системе KCl-KBr-K₂CO₃-K₂SO₄ нет более низкоплавкого состава чем точка M₁₀ 614.

Рисунок 4.17 – Схема фазового тетраэдра KCl-KBr-K₂CO₃-K₂SO₄

Следовательно, в системе не существует составов с минимальной температурой плавления (рис. 4.17). Тетраэдр системы представлен двумя объемами кристаллизации:

1. КВге₂₇е₂₉КСlе₃₀е₂₈ – объем кристаллизации КСl_xBr_{1-x}, L ∠ KCl_xBr_{1-x} (двухфахное тривариантное равновесие);

2. $K_2SO_4e_{30}e_{29}K_2CO_3e_{27}e_{28}$ – объем кристаллизации $K_2(CO_3)_x(SO_4)_{1-x}$, L $\rightleftarrows K_2(CO_3)_x(SO_4)_{1-x}$ (двухфахное тривариантное равновесие);

Два поля кристаллизации пересекаются одной поверхностью кристаллизации:

1. $e_{28}e_{27}e_{29}e_{30}$ – трехфазное дивариантное равновесие L≓ KCl_xBr_{1-x} + $K_2(CO_3)_x(SO_4)_{1-x}$

Система KI-KBr-K₂CO₃-K₂SO₄. Относится к типу систем с непрерывными рядами твердых растворов. В четырехкомпонентной системе KI-KBr-K₂CO₃-K₂SO₄ нет более низкоплавкого состава чем точка M₁₄ 582. Следовательно, в системе не существует составов с минимальной

температурой плавления (рис. 4.18). Тетраэдр системы представлен двумя объемами кристаллизации:

Рисунок 4.18 – Схема фазового тетраэдра KI-KBr-K₂CO₃-K₂SO₄

1. КВre₂₇e₃₁KIe₃₂e₂₈ – объем кристаллизации КВr_xI_{1-х}

2. K₂SO₄e₃₂e₃₁K₂CO₃e₂₇e₂₈ – объем кристаллизации K₂(CO₃)_x(SO₄)_{1-x}

Два объема кристаллизации пересекаются поверхностью кристаллизации:

1. е₂₈е₂₇е₃₁е₃₂ – фазовое равновесие L ∠ KBr_xI_{1-x} + K₂(CO₃)_x(SO₄)_{1-x}

Система Li⁺, Na⁺// Br⁻, CO₃²⁻. Система представлена 3 симплексами. Симплекс NaBr-LiBr-Li₂CO₃ представлен твердыми растворами замещения. Выявлен состав точки отвечающей минимальной температуре плавления 450° C, 50 % Li₂CO₃, 11.5% LiBr, 38.5% NaBr. Симплекс NaBr-Li₂CO₃·Na₂CO₃-Li₂CO₃ не имеет точек нонвариантного равновесия. Симплекс NaBr-Li₂CO₃·Na₂CO₃-Na₂CO₃ имеет точку эвтектического равновесия с составом 10.0 % NaBr, 58.0 % Na₂CO₃, 32.0 % Li₂CO₃ и температурой плавления 470°C (рис. 3.57).

Квадрат системы представлен пятью полями кристаллизации:

 LiBre₅M₁₇e₃₃NaBr – поверхность кристаллизации твердого раствора Li_xNa_{x-1}Br, равновесие L≓Li_xNa_{x-1}Br (дивариантное двухфазное равновесие); 2. Li₂CO₃e₃₃Pp – поверхность кристаллизации компонента Li₂CO₃, равновесие L ∠ Li₂CO₃ (дивариантное двухфазное равновесие);

3. NaBre₃₃pE₁₈e₃ – поверхность кристаллизации компонента NaBr, равновесие L № NaBr (дивариантное двухфазное равновесие);

4. pPE₁₈e₃₄ – поверхность кристаллизации компонента $Li_2CO_3 \cdot Na_2CO_3$, paвновесие L \rightleftharpoons Li₂CO₃ · Na₂CO₃ (дивариантное двухфазное равновесие);

5. Na₂CO₃e₃E₁₈e₃₄ – поверхность кристаллизации компонента Na₂CO₃, равновесие L ≥ Na₂CO₃ (дивариантное двухфазное равновесие);

Пять полей кристаллизации пересекаются в шести линиях моновариантных равновесий:

6. $e_5M_{17}e_{33} - L \rightleftharpoons Li_2CO_3 + Li_xNa_{x-1}Br$ (моновариантное трехфазное равновесие);

7. е₃₃р − L ∠ Li₂CO₃ + NaBr (моновариантное трехфазное равновесие);

8. pP-L \rightleftharpoons Li₂CO₃ + Li₂CO₃·Na₂CO₃ (моновариантное трехфазное равновесие);

9. pE₁₈ − L \rightleftharpoons NaBr + Li₂CO₃·Na₂CO₃ (моновариантное трехфазное равновесие);

10. $E_{18}e_{34} - L \rightleftharpoons Na_2CO_3 + Li_2CO_3 \cdot Na_2CO_3$ (моновариантное трехфазное равновесие);

11. $E_{18}e_3 - L$ ⇒ NaBr + Na₂CO₃ (моновариантное трехфазное равновесие);

Для состава трехомпонентного минимума M₁₇ 450 системы рассчитали свойства, необходимые для определения области прикладного применения.

1. Пересчитаем экв. % в мас. %:

 $\omega_{\text{LiBr}} = \frac{0.115 \cdot 86.845}{(0.115 \cdot 86.845) + (0.385 \cdot 102.894) + (0.50 \cdot 73.891/2)} \cdot 100$ = 15 mac. %

$$\omega_{\text{NaBr}} - 50 \text{ Mac. } \%$$

$$\omega_{\text{Li}_2\text{CO}_3} = 27$$
 мас. %

2. Рассчитаем удельную и мольную энтальпии плавления по правилу аддитивности: $\Delta_{\rm m}$ H = (0.15 · 203) + (0.58 · 255) + (0.27 · 482) = 308 кДж/кг. Δ H = (0.15 · 17,6) + (0.58 · 26.2) + (0.27 · 37.6) = 28.0 кДж/моль 3. Рассчитаем мольную энтропию плавления

$$\Delta_{\rm m}{
m S}={28\over 450}=0.06222~{
m к}{
m Д}{
m ж}/{
m моль}\cdot{
m K}=62.22~{
m Д}{
m ж}/{
m моль}\cdot{
m K}$$

4. Рассчитаем удельную теплоемкость по правилу аддитивности (25°С): $C_{CM} = (0.15 \cdot 51,88) + (0.58 \cdot 51.40) + (0.27 \cdot 97.40) = 63.89 \, \text{Дж/моль} \cdot \text{К}$

5. Рассчитаем плотность смеси по правилу аддитивности (25°С):

$$\rho_{\rm CM} = (0.15 \cdot 3.46) + (0.58 \cdot 3.21) + (0.27 \cdot 2.11) =$$
$$= 2.95 \frac{\Gamma}{\rm CM^3} = 2950 \frac{\rm K\Gamma}{\rm M^3}$$

6. Рассчитаем удельную объемную энтальпию плавления с учетом данных таблицы 4.2.:

$$\Delta_{\rm m} {\rm H}_{\rm V} = \Delta_{\rm m} {\rm H} \cdot \rho_{\rm \scriptscriptstyle CM} = 280 \cdot 2950 = 826000 \ \frac{\kappa \#}{M^3} = 826 \frac{M \#}{M^3}$$

7. Рассчитаем значения электропроводности для индивидуальных компонентов:

$$\begin{split} \varkappa_{\text{LiBr}} &= -1.1362 + 8.6159 \cdot 10^{-3}\text{T} - 1.86221 \cdot 10^{-6} \cdot \text{T}^2 \\ \varkappa_{\text{LiBr}(450)} &= 4.120 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{LiBr}(500)} &= 4.412 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{LiBr}(550)} &= 4.693 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaBr}} &= 9.097\text{exp}(-2324/1.98717 \cdot \text{T}) \\ \varkappa_{\text{NaBr}(450)} &= 1.805 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaBr}(500)} &= 2.003 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaBr}(550)} &= 2.197 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Li}_2\text{CO}_3} &= 0.9877 + 1.3529 \cdot 10^{-3}\text{T} - 4.3873 \cdot 10^{-5} \cdot \text{T}^2 \\ \varkappa_{\text{Li}_2\text{CO}_3(450)} &= 2.304 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Li}_2\text{CO}_3(500)} &= 2.526 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Li}_2\text{CO}_3(550)} &= 2.847 \text{ Om}^{-1}\text{cm}^{-1} \end{split}$$

8. Рассчитаем удельную электропроводность смеси по методу аддитивности:

 $\begin{aligned} \varkappa_{450} &= (0.15 \cdot 4.120) + (0.58 \cdot 1.805) + (0.27 \cdot 2.304) = 2.289 \text{ Om}^{-1} \text{cm}^{-1} \\ \varkappa_{500} &= (0.15 \cdot 4.412) + (0.58 \cdot 2.003) + (0.27 \cdot 2.562) = 2.516 \text{ Om}^{-1} \text{cm}^{-1} \\ \varkappa_{550} &= (0.15 \cdot 4.693) + (0.58 \cdot 2.197) + (0.27 \cdot 2.847) = 2.747 \text{ Om}^{-1} \text{cm}^{-1} \end{aligned}$

Для состава трехомпонентной эвтектики E₁₈ 470 системы рассчитали свойства, необходимые для определения области прикладного применения.

1. Пересчитаем экв. % в мас. %:

$$\omega_{\text{NaBr}} = \frac{0.10 \cdot 102.894}{(0.10 \cdot 102.894) + (0.58 \cdot 105.9888/2) + (0.32 \cdot 73.891/2)} \cdot 100$$
$$= 20 \text{ Mac. \%}$$
$$\omega_{\text{Na}_2\text{CO}_3} = 58 \text{ Mac. \%}$$

$$\omega_{\text{Li}_2\text{CO}_2} = 22$$
 мас. %

2. Рассчитаем удельную и мольную энтальпии плавления по правилу аддитивности:

 $\Delta_{\rm m}$ H = (0.20 · 255) + (0.58 · 264) + (0.22 · 483) = 310 кДж/кг. Δ H = (0.20 · 25,70) + (0.58 · 24.70) + (0.22 · 37.40) = 27.69 кДж/моль

3. Рассчитаем мольную энтропию плавления

$$\Delta_{\rm m}{
m S}={27.69\over 470}=0.05892~{
m к}{
m Д}{
m ж}/{
m моль}\cdot{
m K}=58.92~{
m Д}{
m ж}/{
m моль}\cdot{
m K}$$

4. Рассчитаем удельную теплоемкость по правилу аддитивности (25°С): $C_{CM} = (0.20 \cdot 51.40) + (0.58 \cdot 112.30) + (0.22 \cdot 97.40) = 96.84 \, \text{Дж/моль} \cdot \text{К}$

5. Рассчитаем плотность смеси по правилу аддитивности (25°С):

$$\rho_{\rm CM} = (0.20 \cdot 3,21) + (0.58 \cdot 2.53) + (0.22 \cdot 2.11) =$$
$$= 2.575 \frac{\Gamma}{\rm CM^3} = 2575 \frac{\rm K\Gamma}{\rm M^3}$$

6. Рассчитаем удельную объемную энтальпию плавления с учетом данных таблицы 4.2.:

$$\Delta_{\rm m} {\rm H}_{\rm V} = \Delta_{\rm m} {\rm H} \cdot \rho_{\rm cm} = 280 \cdot 2575 = 721000 \ \frac{{\rm kJm}}{{\rm m}^3} = 721 \frac{{
m MJm}}{{
m m}^3}$$

7. Рассчитаем значения электропроводности для индивидуальных компонентов:

$$\begin{split} \varkappa_{\text{NaBr}} &= 9.097 \text{exp}(-2324/1.98717 \cdot \text{T}) \\ \varkappa_{\text{NaBr}(470)} &= 1.885 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaBr}(520)} &= 2.085 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{NaBr}(570)} &= 2.272 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{C}0_3} &= 13.758 \text{exp}(-3527/1.98717 \cdot \text{T}) \\ \varkappa_{\text{Na}_2\text{C}0_3(470)} &= 1.179 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{C}0_3(520)} &= 1.377 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Na}_2\text{C}0_3(570)} &= 1.676 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Li}_2\text{C}0_3(570)} &= 2.405 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Li}_2\text{C}0_3(470)} &= 2.405 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Li}_2\text{C}0_3(520)} &= 2.675 \text{ Om}^{-1}\text{cm}^{-1} \\ \varkappa_{\text{Li}_2\text{C}0_3(570)} &= 2.966 \text{ Om}^{-1}\text{cm}^{-1} \end{split}$$

8. Рассчитаем удельную электропроводность смеси по методу аддитивности:

 $\begin{aligned} \varkappa_{470} &= (0.20 \cdot 1.885) + (0.58 \cdot 1.179) + (0.22 \cdot 2.405) = 1.589 \ \mathrm{Om^{-1} cm^{-1}} \\ \varkappa_{520} &= (0.20 \cdot 2.085) + (0.58 \cdot 1.377) + (0.22 \cdot 2.675) = 1.804 \ \mathrm{Om^{-1} cm^{-1}} \\ \varkappa_{570} &= (0.20 \cdot 4.120) + (0.58 \cdot 1.805) + (0.22 \cdot 2.304) = 2.079 \ \mathrm{Om^{-1} cm^{-1}} \end{aligned}$

Экспериментальная энтальпия плавления смеси М₁₇ равна 275 кДж/кг, меньше от расчетной на 10 %.

Система Li⁺, Cs⁺|| Br⁻,CO₃²⁻. В результате экспериментального изучения, было выявлено, что квадрат составов системы разбивается на 3 симплекса. Симплекс CsBr-Cs₂CO₃-Li₂CO₃ имеет эвтектическую точку E_{19} нонвариантного равновесия с составом 20% CsBr, 56% Cs₂CO₃, 24% Li₂CO₃ и температурой плавления 450°C, а также точку выклинивания R с температурой плавления 459°C.

Рисунок 4.19 – Схема фазового тетраэдра Li⁺, Na⁺|| Br⁻, CO₃²⁻.

Симплекс CsBr-CsBr·LiBr-Li₂CO₃ не имеет составов, отвечающих точкам нонвариантного равновесия. В симплексе LiBr-CsBr·LiBr-Li₂CO₃ существует смесь с эвтектическим типом плавления, состава 30.5% CsBr, 64.5% LiBr, 5% Li₂CO₃ и температурой плавления 213° C. А также перитектическая точка с температурой плавления 260° C (рис. 4.20).

Фазовый квадрат системы представлен шестью полями кристаллизации:

 2. е₃₈е₂₀Р₁р₁ – поверхность кристаллизации компонента CsBr·LiBr равновесие L≓CsBr·LiBr (дивариантное двухфазное равновесие);

3. CsBre₃₅E₁₉e₄₀P₁p₁ – поверхность кристаллизации компонента CsBr равновесие L ∠CsBr (дивариантное двухфазное равновесие);

4. Li₂CO₃e₅E₂₀P₁e₄₀E₁₉Re₃₇ – поверхность кристаллизации компонента Li₂CO₃ равновесие L≓Li₂CO₃ (дивариантное двухфазное равновесие);

5. Cs₂CO₃e₃₆RE₁₉e₃₅ – поверхность кристаллизации компонента Cs₂CO₃ равновесие L ∠Cs₂CO₃ (дивариантное двухфазное равновесие);

6. е₃₆Re₃₇ – поверхность кристаллизации компонента Cs₂CO₃·Li₂CO₃ равновесие L≓Cs₂CO₃·Li₂CO₃ (дивариантное двухфазное равновесие);

Девятью линиями моновариантного равновесия:

7. е₅E₂₀− L≓LiBr + Li₂CO₃ (моновариантное трехфазное равновесие);

8. $e_{38}E_{20}$ – L \rightleftharpoons LiBr + CsBr·LiBr (моновариантное трехфазное равновесие);

9. $E_{20}P_1$ – L≓ CsBr·LiBr + Li₂CO₃ (моновариантное трехфазное равновесие);

10. p_1P_1 – L \rightleftharpoons CsBr ·LiBr + CsBr (моновариантное трехфазное равновесие);

11. $p_1e_{40}E_{19}$ – L \rightleftharpoons CsBr + Li₂CO₃ (моновариантное трехфазное равновесие);

12. $e_{35}E_{19} - L \rightleftharpoons CsBr + Cs_2CO_3$ (моновариантное трехфазное равновесие);

13. $E_{19}R$ – L $(=]{C}C_{s_2}CO_3$ + Li₂CO₃ (моновариантное трехфазное равновесие);

14. Re₃₆ – L \rightleftharpoons Cs₂CO₃ + Cs₂CO₃·Li₂CO₃ (моновариантное трехфазное равновесие);

15. Re₃₇ – L \rightleftharpoons Li₂CO₃ + Cs₂CO₃·Li₂CO₃ (моновариантное трехфазное равновесие);

Для составов трехомпонентных эвтектик E₁₉ и E₂₀ рассчитать прикладные свойства не было возможности, из-за отсутствия данных о карбонате цезия. Экспериментальное значение энтальпии плавления составило 87 КДж/кг и 65 КДж/кг соответственно. Кривые ДТА охлаждения эвтектик представлены на рисунках 4.19 и 4.20

Рисунок 4.19 – Кривая ДТА охлаждения эвтектической смеси Е19 системы

Рисунок 4.20 – Кривая ДТА охлаждения эвтектической смеси E_{20} системы $Li^{+},\,Cs^{+}||\,Br^{\text{-}},CO_{3}{}^{2\text{-}}$

Экспериментальные данные по температурам, составам и свойствам изученных смесей приведены в таблице 4.2. и 4.3.

Начиканоранию	Точка	Содержание компонентов				Температура	Δ _m H,				
системы		1	2	3	4	плавления, °С	кДж/ кг				
1	2	3	4	5	6	7	8				
Трехкомпонентные системы (мол.%)											
NaCl-NaBr-Na ₂ CO ₃	M ₃	24.0	36.0	40.0	-	615	262				
NaCl-NaBr-Na ₂ SO ₄	M_4	35.0	35.0	30.0	-	613	209				
NaI-Na ₂ CO ₃ -Na ₂ SO ₄	M9	70.0	21.0	9.0	-	576	179				
NaI-NaBr-Na ₂ SO ₄	M_8	48.0	27.0	25.0	-	582	165				
KI-KBr-K ₂ CO ₃	M ₁₄	40.0	40.0	20.0	-	582	152				
KI-KBr-K ₂ SO ₄	M ₁₆	43.4	41.6	15.0	-	620	150				
Трехкомпонентные взаимные системы (экв.%)											
LiBr-Na ₂ CO ₃ -NaBr- Li ₂ CO ₃	M ₁₇ E ₁₈ e ₃₃	11.5 - -	- 58.0 -	38.5 10.0 35.0	50.0 32.0 65.0	450 620 470	280 265				
LiBr-Cs ₂ CO ₃ -CsBr- Li ₂ CO ₃	E ₁₉ E ₂₀ e ₄₀	- 65.5 -	56.0 - -	20.0 30.5 78.0	24.0 5.0 22.0	450 213 624	87 65 -				
Четырехкомпонентные системы (мол.%)											
LiCl-LiBr-Li ₂ CO ₃ -Li ₂ SO ₄	M∎	22.5	22.5	30.0	15.0	398	184				
NaCl-NaBr-Na ₂ CO ₃ - Na ₂ SO ₄	M_1^{\bullet}	28.0	28.0	25.0	19.0	585	251				
KCl-KBr-K ₂ CO ₃ -K ₂ SO ₄	HPTP	-	-	-	-	-	-				
KI-KBr-K ₂ CO ₃ -K ₂ SO ₄	HPTP	-	-	-	-	-	-				

Таблица 4.2 – Экспериментальные данные по полученным смесям

Система	Точка	Плотность (25°С), ^{кг} _{м³}	Удельная теплоемкость (25°С), Дж/моль К	Удельная объемная энтальпия плавления, <u>МДж</u>	Удельная электропро водность $(t_{n,n}+50^{\circ}C),$ $Om^{-1}cm^{-1}$					
NaCl-NaBr-Na ₂ CO ₃	M ₃	2750	78.55	^{м³} 750	2.443					
NaCl-NaBr-Na ₂ SO ₄	M_4	2770	83.68	579	2.242					
NaI-Na ₂ CO ₃ -Na ₂ SO ₄	M9	2770	68.59	496	2.289					
NaI-NaBr-Na ₂ SO ₄	M ₈	3320	71.57	548	2.028					
KI-KBr-K ₂ CO ₃	M ₁₄	3750	65.26	570	1.162					
KI-KBr-K ₂ SO ₄	M ₁₆	2910	65.82	437	1.146					
Трехкомпонентные взаимные системы										
LiBr-Na ₂ CO ₃ -NaBr- Li ₂ CO ₃	M ₁₇	2950	63.89	826	2.516					
	E ₁₈	2575	96.84	721	1.804					
	e ₃₃	-	-	-	-					
LiBr-Cs ₂ CO ₃ -CsBr- Li ₂ CO ₃	E ₁₉	-	-	-	-					
	E ₂₀	-	-	-	-					
	e40	-	-	-	-					
Четырехкомпонентные системы										
LiCl-LiBr-Li ₂ CO ₃ - Li ₂ SO ₄	M■	2480	83.58	456	3.878					
NaCl-NaBr-Na ₂ CO ₃ - Na ₂ SO ₄	M ₁ [∎]	2700	88.05	678	2.146					
KCl-KBr-K ₂ CO ₃ - K ₂ SO ₄	HPTP	-	-	-	-					
KI-KBr-K ₂ CO ₃ - K ₂ SO ₄	HPTP	-	-	-	-					

Таблица 4.3 – Экспериментальные данные по полученным смесям
4.2. Анализ топологии ликвидусов трехкомпонентных систем Анализ галогенидно-карбонатных горизонтальных рядов.

Ряд систем MeF-MeBr-Me₂CO₃ (Me-Li, Na, K, Rb, Cs). Характеризуется одним симплексом в двух системах LiF-LiBr-Li₂CO₃, NaF-NaBr-Na₂CO₃. В системе KF-KBr-K₂CO₃ фазовый комплекс представлен одним симплексом и отмечено образование эвтектики с температурой плавления 514°С и точки выклинивания с температурой плавления 558°С. Следовательно, в системах неизученных RbF-RbBr-Rb₂CO₃, CsF-CsBr-Cs₂CO₃ можно предположить наличие эвтектики И ТОЧКИ выклинивания. Фазовые комплексы систем должны быть представлены одним симплексом и включать три поля кристаллизации индивидуальных компонентов и поле двойного соединения (рис. 4.21).

*Ряд систем MeCl-MeBr-Me*₂*CO*₃ (*Me-Li*, *Na*, *K*, *Rb*, *Cs*). Образуются твердые растворы состава MeCl_xBr_{1-x} (Me-Li, Na, K) в системах LiCl-LiBr-Li₂CO₃, NaCl-NaBr-Na₂CO₃, KCl-KBr-K₂CO₃ с наличием минимумов и существованием двух полей кристаллизации - твердого раствора и карбоната металла. Исходя из этого следует предположить, что в неизученных системах RbCl-RbBr-Rb₂CO₃ и CsCl-CsBr-Cs₂CO₃ также прогнозируется образование минимумов на кривых моновариантных равновесий. Фазовые комплексы систем будут представлены двумя полями кристаллизации - полем карбоната металла и полем твердого раствора состава MeCl_xBr_{1-x} (Me-Rb, Cs).

Ряд систем MeI-MeBr-Me₂CO₃ (Me-Li, Na, K, Rb, Cs). Характеризуется образованием твердых растворов состава MeI_xBr_{1-x} (Me-Na, K) в системах NaI-NaBr-Na₂CO₃, KI-KBr-K₂CO₃ (которые были изучены в данной работе) и наличием точки минимума на кривых моновариантных равновесий. Исходя из этого, можно предположить, что в неизученных системах LiI-LiBr-Li₂CO₃, RbI-RbBr-Rb₂CO₃, CsI-CsBr-Cs₂CO₃ также прогнозируются твердые растворы состава MeI_xBr_{1-x} (Me-Li, Rb, Cs) с минимумами на кривых моновариантных равновесий.

Рисунок 4.21 – Фазовые комплексы галогенидно-карбонатных трехкомпонентных систем

Анализ галогенидно-карбонатных вертикальных рядов

*Ряд трехкомпонентных систем LiHal-LiBr-Li*₂ CO_3 (Hal-F,Cl,I). В системе LiF-LiBr-Li₂CO₃ отмечено образование эвтектики с температурой плавления 444°С. Фазовый комплекс системы представлен тремя полями кристаллизации индивидуальных компонентов. В следующей системе LiCl-LiBr-Li₂CO₃ выявлен минимум на кривой моновариантных равновесий с смеси 460°C. Фазовый температурой плавления комплекс системы представлен полем кристаллизации карбоната лития и полем твердых растворов LiCl_xBr_{1-x}. Образование непрерывных твердых растворов связано с наличием твердых растворов в двухкомпонентной системе LiCl-LiBr. Система LiI-LiBr-Li₂CO₃ не изучена. Исходя их строения систем меньшей мерности и фазового комплекса предыдущей системы, следует предположить существование поля твердого раствора Lil_xBr_{1-x} с минимальной температурой плавления.

Топология ликвидусов следующего рядя трехкомпонентных систем NaHal-NaBr-Na₂CO₃ (Hal-F,Cl,I) аналогична литиевому ряду.

*Ряд трехкомпонентных систем KHal-KBr-K*₂*CO*₃ (*Hal-F*,*Cl*,*I*). В первой системе ряда существует два фазовых треугольника вследствие образования

146

соединения KF·K₂CO₃. Поэтому в системе образуется эвтектика с температурой плавления 514°C и точка выклинивания с температурой 558°C. В двух системах KCl-KBr-K₂CO₃ и KI-KBr-K₂CO₃ образуются твердые растворы с минимумом на кривых моновариантных равновесий.

Системы рядов трехкомпонентных систем RbHal-RbBr-Rb₂CO₃ и CsHal-CsBr-Cs₂CO₃ (Hal-F,Cl,I) еще не исследованы. Однако можно предположить, что их топология ликвидусов аналогична калиевому ряду вследствие аналогичного строения систем огранения.

Анализ галогенидно-сульфатных горизонтальных рядов.

Ряд систем MeF-MeBr-Me₂SO₄ (Me-Li, Na, K, Rb, Cs). Характеризуется одним симплексом в системе LiF-LiBr-Li₂SO₄ и двумя - в остальных системах. Это обусловлено образованием двойных соединений MeF·Me₂CO₃ (Me-Na, K, Rb, Cs), в которых к полям кристаллизации индивидуальных компонентов прибавляется поле соединения. В системе NaF-NaBr-Na₂SO₄ образуются две эвтектики с температурами плавления 587°С и 579°С. В системе KF-KBr-K₂SO₄ также образуются две эвтектики с температурами 584°С и 642°С. Однако в системе RbF-RbBr-Rb₂SO₄ существует только одна эвтектика с температурой плавления 526°С, а вторая трансформировалась в перитектику с температурой плавления 599°С. Исходя из этого следует что в неизученной предположить, системе CsF-CsBr-Cs₂SO₄ будет существовать эвтектика и перитектика. Фазовый комплекс системы будет представлен тремя полями кристаллизации индивидуальных компонентов и полем соединения (рис. 4.22).

Ряд систем MeCl-MeBr-Me₂SO₄ (Me-Li, Na, K, Rb, Cs). Наличие твердых растворов с минимумами на кривых моновариантных равновесий отмечено в системах LiCl-LiBr-Li₂SO₄, NaCl-NaBr-Na₂SO₄, KCl-KBr-K₂SO₄, CsCl-CsBr-Cs₂SO₄. Фазовые комплексы систем состоят из поля кристаллизации сульфата металла и твердого раствора состава MeCl_xBr_{1-x} (Me-Li, Na, K, Cs). Следовательно, в неизученной системе RbCl-RbBr-Rb₂SO₄ можно предположить образование твердых растворов с минимумом на кривой

моновариантного равновесия. Фазовый комплекс системы будет представлен полем кристаллизации карбоната цезия и полем твердого раствора состава RbCl_xBr_{1-x}.

Рисунок 4.22 – Фазовые комплексы галогенидно-сульфатных трехкомпонентных систем

Ряд систем MeI-MeBr-Me₂SO₄ (Me- Na, K, Rb, Cs). Характеризуется наличием твердых растворов с минимумами на кривых моновариантных равновесий в системах NaI-NaBr-Na₂SO₄, KI-KBr-K₂SO₄, CsI-CsBr-Cs₂SO₄. Фазовые комплексы систем состоят ИЗ поля кристаллизации индивидуального компонента сульфата металла и твердого раствора состава MeI_xBr_{1-x} (Me- Na, K, Cs). Следовательно, в неизученных системах LiI-LiBr-Li₂SO₄ и RbI-RbBr-Rb₂SO₄ предположительно образуются твердые растворы с минимумами на кривых моновариантных равновесий. Фазовые комплексы Поле систем включают два поля кристаллизации. индивидуального компонента сульфата металла и поле твердого раствора состава MeI_xBr_{1-x}.

Анализ вертикальных галогенидно-сульфатных вертикальных рядов.

Ряд трехкомпонентных систем LiHal-LiBr-Li₂SO₄ (Hal-F,Cl,I). В системе LiF-LiBr-Li₂SO₄ отмечено образование эвтектики с температурой плавления 423°С. Фазовый комплекс системы представлен тремя полями кристаллизации индивидуальных компонентов. В следующей системе LiCl-

LiBr-Li₂SO₄ выявлен минимум на кривой моновариантных равновесий с температурой плавления смеси 482° C. Фазовый комплекс системы представлен полем кристаллизации сульфата лития и полем твердых растворов LiCl_xBr_{1-x}. Образование непрерывных твердых растворов связано с наличием твердых растворов в двухкомпонентной системе LiCl-LiBr. Система LiI-LiBr-Li₂SO₄ не изучена. Исходя их строения систем меньшей мерности и фазового комплекса предыдущей системы, следует предположить существование поля твердого раствора LiI_xBr_{1-x} с минимальной температурой плавления и поля сульфата лития.

Ряд трехкомпонентных систем NaHal-NaBr-Na₂SO₄ (Hal-F,Cl,I). В первой системе ряда существует два симплекса вследствие образования соединения NaF·Na₂SO₄. Поэтому в системе образуются две эвтектики с температурами плавления 579°C и 587°C. В двух системах NaCl-NaBr-Na₂SO₄ и NaI-NaBr-Na₂SO₄ образуются твердые растворы с минимумом на кривых моновариантных равновесий. Фазовые комплексы систем представлены полем кристаллизации индивидуального компонента и твёрдого раствора NaCl_xBr_{1-x} и NaI_xBr_{1-x}.

Топология ликвидусов следующего рядя трехкомпонентных систем KHal-KBr-K₂SO₄ (Hal-F,Cl,I) аналогична натриевому ряду.

Ряд трехкомпонентных систем RbHal-RbBr-Rb₂SO₄ (Hal-F,Cl,I). В первой системе ряда существует два симплекса вследствие образования соединения RbF·Rb₂SO₄. Поэтому в системе образуются эвтектика с температурой плавления 526° C и перитектика с температурой 599. Две системы RbCl-RbBr-Rb₂SO₄ и RbI-RbBr-Rb₂SO₄ не изучены. Однако исходя из строения систем огранения и топологии ликвидусов описанных выше рядов можно предположить, что в них образуются твёрдые растворы с минимумом на кривых моновариантных равновесий. Фазовые комплексы систем состоят из поля кристаллизации индивидуального компонента и поля твёрдого раствора RbCl_xBr_{1-x} и RbI_xBr_{1-x}.

Ряд трехкомпонентных систем CsHal-CsBr-Cs₂SO₄ (Hal-F, Cl, I). Система CsF-CsBr-Cs₂SO₄ не изучена. Из строения ликвидуса предыдущего ряда, можно предположить, что в системе образуются эвтектика и перитектика. Фазовый комплекс будет представлен четырьмя полями кристаллизации. Полями индивидуальных компонентов и полем соединения CsF·Cs₂SO₄. В двух системах CsCl-CsBr-Cs₂SO₄ и CsI-CsBr-Cs₂SO₄ образуются твердые растворы с минимумом на кривых моновариантных равновесий. Фазовые комплексы систем представлены полем кристаллизации индивидуального компонента и твёрдого раствора CsCl_xBr_{1-x} и CsI_xBr_{1-x}.

4.3. Анализ топологии ликвидусов бромид-карбонатного ряда трехкомпонентных взаимных систем

В системе Li,NallBr,CO₃ стабильной диагональю является LiBr-Na₂CO₃ $(\Delta_r H_{298}^o = -106.5 \text{ кДж}, \Delta_r G_{298}^o = -100.6 \text{ кДж})$. Вследствие наличия соединения Li₂CO₃·Na₂CO₃ на бинарной стороне Li₂CO₃-Na₂CO₃ система разбивается на три вторичных фазовых треугольника. В остальных трех тройных взаимных системах термодинамический расчет показал, что стабильными диагоналями являются Li₂CO₃-KBr ($\Delta_r H^o_{298}$ = -156.5 кДж, $\Delta_r G^o_{298}$ = -156.1 кДж), Li₂CO₃-RbBr $(\Delta_r H_{298}^o = -175.7 \text{ кДж}, \Delta_r G_{298}^o = -170.3 \text{ кДж}), \text{Li}_2 \text{CO}_3 \text{-CsBr} (\Delta_r H_{298}^o = -188.2 \text{ кДж},$ $\Delta_{r}G_{298}^{0} = -177.3$ кДж). Система Li⁺, K⁺||Br⁻, CO₃²⁻ разбивается на три фазовых треугольника. В отличие от систем $Li^+, Na^+ ||Br^-, CO_3^{2-}, Li^+, K^+ ||Br^-, CO_3^{2-}$ в системах $Li^+, Rb^+ ||Br^-, CO_3^{2-}$ и $Li, Cs ||Br^-, CO_3^{2-}$ отмечено образование на двойных сторонах двух соединений Li₂CO₃·Rb₂CO₃, LiBr·RbBr и Li₂CO₃·Cs₂CO₃, LiBr CsBr. Поэтому предполагалось разбиение систем на четыре фазовых треугольника. Однако в изученной системе Li⁺, Rb⁺||Br⁻, CO₃²⁻ соединение Li₂CO₃·Cs₂CO₃ выклинивается внутри тройной взаимной системы и поэтому стабильная секущая CsBr-Li₂CO₃·Cs₂CO₃ не реализуется и фазовый комплекс представлен тремя фазовыми треугольниками. Следовательно, система Li⁺,Rb⁺||Br⁻,CO₃²⁻ будет также представлена тремя фазовыми треугольниками и её ликвидус будет аналогичен системе $Li^+, Cs^+ ||Br^-, CO_3^{2-}$ (рис 4.23).

Рисунок 4.23 – Фазовые комплексы галогенидно-карбонатных трехкомпонентных

взаимных систем

ЗАКЛЮЧЕНИЕ

1. Установлено что в системах MHal-MBr-M₂CO₃ (M₂SO₄) (M- Na⁺, K⁺, Hal-Br⁻, I⁻) из трех вариантов моделей ликвидусов реализуется вариант с образование непрерывных твердых растворов NaCl_xBr_{1-x}, NaBr_xI_{1-x}, KBr_xI_{1-x}, Na₂(SO₄)_x(CO₃)_{1-x} с минимумом на кривых моновариантных равновесий и фазовые комплексы представлены двумя полями кристаллизации. Из девяти вариантов моделей ликвидусов в системе Li⁺,Na⁺||Br⁻,CO₃²⁻ реализован вариант со стабильной диагональю NaBr-Li₂CO₃ с образованием в симплексе LiBr-NaBr-Li₂CO₃ минимума, а также эвтектики и перитектики в симплексе NaBr-Li₂CO₃·Na₂CO₃-Na₂CO₃. В системе Li⁺,Cs⁺||Br⁻,CO₃²⁻ из 12 вариантов моделей ликвидусов реализован вариант с образованием эвтектики и точки выклинивания в симплексе CsBr-Li₂CO₃-Cs₂CO₃, а также эвтектики и перитектики в симплексе CsBr-Li₂CO₃.

2. Описано химическое взаимодействие в тройных взаимных системах $Li^+, Na^+ ||Br^-, CO_3^{2-}, Li^+, Cs^+ ||Br^-, CO_3^{2-}$ конверсионным методом и методом ионного баланса. В системе $Li^+, Na^+ ||Br^-, CO_3^{2-}$ основные реакции описаны для трех точек эквивалентности, а в системе $Li^+, Cs^+ ||Br^-, CO_3^{2-}$ для семи точек эквивалентности. Методом ионного баланса химическое взаимодействие в системе $Li^+, Na^+ ||Br^-, CO_3^{2-}$ описано для семи смесей произвольного состава; в системе $Li^+, Cs^+ ||Br^-, CO_3^{2-}$ описано для девяти смесей. Расчет тепловых эффектов и энергии Гиббса показывает возможность протекания реакций обмена.

3. Экспериментально исследованы методами ДТА, ТГА, РФА шесть трехкомпонентных, две трехкомпонентных взаимных системы и четыре четырехкомпонентные системы. В трехкомпонентных системах выявлены координаты шести тройных минимумов на кривых моновариантных равновесий. В тройных взаимных системах выявлены минимум, две квазидвойных эвтектики и 3 тройных эвтектики. Минимальная температура плавления среди эвтектических смесей составляет 213 °C. В двух

четырехкомпонентных системах LiCl-LiBr-Li₂CO₃-Li₂SO₄, NaCl-NaBr-Na₂CO₃-Na₂SO₄ определены координаты минимумов кривых на моновариантных равновесий, а в двух четырехкомпонентных системах KCl- $KBr-K_2CO_3-K_2SO_4$, KI-KBr-K₂CO₃-K₂SO₄ установлено образование непрерывных рядов твердых растворов KCl_xBr_{1-x} , $K_2(SO_4)_x(CO_3)_{1-x}$, KI_xBr_{1-x} без экстремумов на кривых моновариантных равновесий. Определены удельные энтальпии плавления девяти смесей составов минимумов и трех тройных эвтектик, по которым рассчитана тепловая мощность. Смеси М₃ (NaCl-NaBr-Na₂CO₃), M₈ (NaI-NaBr-Na₂SO₄), M₁₄ (KI-KBr-K₂CO₃), M₁₇(LiBr-Na₂CO₃-NaBr-Li₂CO₃), М[■] (LiCl-LiBr-Li₂CO₃-Li₂SO₄) с удельной объемной энтальпией плавления выше 500 МДж/м³ могут быть рекомендованы в качестве основы для теплоаккумулирующих материалов.

4. Рассчитаны аддитивности удельные электропроводности, ПО плотности и теплоемкости для низкоплавких двенадцати смесей минимумов эвтектик изученных Значения удельной электрической И систем. проводимости более 2 Ом⁻¹см⁻¹ отмечаются у смесей М₃ (NaCl-NaBr-Na₂CO₃), M₄ (NaCl-NaBr-Na₂SO₄), M₉ (NaI-Na₂CO₃-Na₂SO₄), M₈ (NaI-NaBr-Na₂SO₄), M_{17} (LiBr-Na₂CO₃-NaBr-Li₂CO₃), M[•] (LiCl-LiBr-Li₂CO₃-Li₂SO₄), M[•]₁ (NaCl-NaBr-Na₂CO₃-Na₂SO₄). Данные смеси могут быть рекомендованы в качестве основы для создания расплавляемых электролитов химических источников тока.

5. Анализ результатов работы и данных литературы позволил провести прогноз топологии ликвидусов неизученных систем. В вертикальных рядах галогенидно-карбонатных и галогенидно-сульфатных систем, наблюдается трансформация ликвидусов от систем эвтектического типа MeF-MeBr-Ме₂CO₃(SO₄) к системам с непрерывными рядами твердых растворов MeHal_xBr_{1-x} (Hal-Cl, I) $MeCl(I)-MeBr-Me_2CO_3(SO_4)$ В рядах (Me-Li,Na,K,Rb,Cs). В трехкомпонентных ряду взаимных систем Li⁺,Me⁺||Br⁻,CO₃²⁻ (Me-Na,K,Rb,Cs) наблюдается трансформация стабильных диагоналей от LiBr-Na₂CO₃ к MeBr-Li₂CO₃, что подтверждено термодинамическим расчетом реакций обмена.

СПИСОК ЛИТЕРАТУРЫ

Serrano, P. Preparation of uranium by electrolysis in chloride melt / P.
 Serrano, P. Taxil, O. Dugne [et al.] // J.of Nuclear Materials. – 2000. – V. 282, №
 - P. 137–145.

 Афоничкин, В. К. Последовательное извлечение оксидов урана электролизом расплавов M₂WO₄-M₂W₂O₇-UO₂WO₄ (M= Li, Na, K, Cs) / В. К. Афоничкин, Л. Г. Хрустова, В. Е. Комаров // Радиохимия. – 2012. – Т. 54, №. 4. – С. 318–323.

3. Лебедев, В. А. Получение тонкодисперстного порошка титана объемным восстановлением его ионов натрием, растоворенным в расплаве BaCl₂-CaCl₂-NaCl / В. А Лебедев, В. В Поляков // Изв. высших учебных заведений. Порошковая металлургия и функциональные покрытия. – 2022. – Т. 16, № 1. – С. 4–16.

4. Кондратьев, Д. А. Изучение условий получения поверхностных сплавов системы эрбий-никель в расплаве эвтектической смеси хлоридов лития и калия / Д. А. Кондратьев, М. А. Зайцев, К. О. Камалов // Общество. Наука. Инновации: материалы конференции. – Киров, 2019. – С. 103–107.

5. Першин, П. С. Получение алюмокремниевых сплавов в расплаве КF-AlF₃-SiO₂ / П. С. Першин, В. А. Суздальцев, Ю. П. Зайков // Бутлеровские сообщения. – 2015. – Т. 43, № 9. – С. 116–120.

6. Першин, П. С. Алюмотермическое получение сплавов Al-Zr в расплаве KF-AlF₃ / П. С. Першин, А. А Филатов, В. А. Суздальцев [и др.] // Расплавы. – 2016, № 5. – С. 413–421.

Mullabaev, A. Properties of the LiCl-KCl-Li₂O system as operating medium for pyro-chemical reprocessing of spent nuclear fuel / A. Mullabaev, O. Tkacheva, V. Shishkin [et al.] // J.of Nuclear Materials. – 2018. – V. 500. – P. 235–241.

8. Fredrickson, G. Analysis and modeling of the equilibrium behaviors of U and Pu in molten LiCl-KCl/Cd system at 500 °C / G. Fredrickson G., T. Yoo // J. of Nuclear Materials. – 2018. – V. 508. – P. 51–62.

9. Яковлев, Р. М. На пути к безопасной атомной энергетике / Р. М. Яковлев, И. А. Обухова // Биосфера. – 2017. – Т. 9, № 2. – С. 123–135.

Игнатьев, В.В. Жидкосолевой реактор для замыкания ядерного топливного цикла по всем актиноидам / В.В. Игнатьев, М. В. Кормилицын, Л. А. Кормилицына [и др.] //Атомная энергия. – 2018. – Т. 125, № 5. – С. 251–255.

11. Игнатьев, В. В. Жидкосолевые реакторы: новые возможности, проблемы и решения / В. В. Игнатьев, О. С. Фейнберг, А. В. Загнитько [и др.] //Атомная энергия. – 2012. – Т. 112, №. 3. – С. 135–143.

12. Бландинский В. Ю., Расчетное обоснование экспериментов с расплавленно-солевыми торий-урановыми топливными композициями в петле реактора МБИР / В. Ю. Бландинский, Д. С. Кузенкова // Атомная энергия. – 2020. – Т. 128, № 5. – С. 254–258.

Клименко, А. В. Вырожденные задачи оптимизации и оптимальность ЯЭУ //Изв. вузов. Ядерная энергетика. – 2015. – № 4. – С. 133-158.

14. Горшкова В.М. О химических источниках тока и аккумуляторах
/ В. М. Горшкова, В. К. Харитоненко, К. М. Малахов // Изв. Юго-Западного государственного университета. Серия: Техника и технологии. – 2017. – Т. 7, № 3. – С. 116–127.

15. Нижниковский, Е. Перспективы использования химических источников тока для электропитания автономной радиоэлектронной аппаратуры / Е. Нижниковский // Современная электроника. – 2010. – Т. 2. – С. 12.

16. Ricca, C. Mixed lithium-sodium (LiNaCO3) and lithiumpotassium (LiKCO₃) carbonates for low temperature electrochemical applications: Structure, electronic properties and surface reconstruction from ab-initio calculations / C. Ricca, A. Ringuedé, M. Cassir [et al.] // Surface Science. – 2016. – V. 647. – P. 66–77.

17. Гаркушин, И.К. Электролиты для высокотемпературных химических источников тока: формирование и исследование систем, составы и свойства / И.К. Гаркушин, Т.В. Губанова, Е.И. Фролов, [и др.] // Электрохимическая энергетика. – 2015. – Т. 15. – № 4. – С. 180–195.

Моржухин, А. М. Теплоаккумулирующие материалы (обзор) / А.
 М. Моржухин // Журн. Вестник Межд. ун-та природы, общества и человека «Дубна». Серия «Естественные и инженерные науки». – 2016. – № 4. – С. 24–33.

19. Вердиев, Н. Н. Теплоаккумулирующие смеси из галогенидов, сульфатов лития и натрия / Н. Н. Вердиев, З. Н. Вердиева, А. Б. Алхасов [и др.] // Альтернативная энергетика и экология (ISJAEE). – 2021. – № 4-6. – С. 21–31.

20. Дибиров, Я. А. Фазовые равновесия и теплоаккумулирующие материалы в системе LiCl-Li₂SO₄-CaMoO₄ / Я. А. Дибиров, Н. Н. Вердиев, П.А. Арбуханова // Изв. вузов. Химия и хим. технология. – 2012. – Т. 55. – № 8. – С. 50–52.

21. Бурчаков А. В. Теплоаккумулирующая смесь из галогенидов и хроматов натрия / А. В. Бурчаков // Теплофизика высоких температур. –
2021. – Т. 59. – № 1. – С. 82–85.

22. Лихачева, С.С. Выявление низкоплавких составов в трехкомпонентных системах NaCl–NaI–Na₂WO₄ и KCl–KI–K₂WO₄ / С. С. Лихачева, Е. М. Егорова, И. К. Гаркушин // Журн. неорг. химии. – 2020. – Т. 65. – № 7. – С. 958–961.

 Вердиев, Н.Н. Фазовые равновесия в системе NaF–NaCl–NaBr– Na₂CrO₄ / Н. Н. Вердиев, И. К. Гаркушин, А. В. Бурчаков [и др.] // Неорган. материалы. – 2020. – Т. 56. – №. 11. – С. 1243–1251.

24. Гусев, М.А. Исследование объединенного стабильного тетраэдра LiF-LiCl-KCl-CsCl четырехкомпонентной взаимной системы Li, K, Cs|| F, Cl / М.А. Гусев, А. А. Мясникова, М. А. Сухаренко [и др.] // Инновации и зеленые технологии. – 2019. – С. 74–78.

25. Wang, M. Glass-free Li₂SiO₃-LiF ceramics with high thermal conductivity/M. Wang, C. Zhong, E. Li [et al.] // Materials Today Communications. – 2022. – V. 33. – P. 104796.

26. Liu, B. Novel transparent LiF ceramics enabled by cold sintering at 150° C/ B. Liu, F. L. Lin, C. C. Hu [et al.] // Scripta Materialia. – 2022. – V. 220. – P. 114917.

27. Jia, Y. Q. Dense LiF microwave dielectric ceramics with near-zero linear shrinkage during sintering / Y. Q. Jia, W. B. Hong, L. Li [et al.] // Ceramics International. – 2022. – V. 48. – № 19. – P. 28463–28470.

28. Yu, K. Constructing LiF-rich artificial SEI at a two-dimensional copper net current collector in anode-free lithium metal batteries / K. Yu, J. Chen, K. Lin [et al.] // Surfaces and Interfaces. – 2022. – V. 34. – P. 102326.

29. Zhang, X.Q. A sustainable solid electrolyte interphase for highenergydensity lithium metal batteries under practical conditions / X.Q. Zhang, T. Li, B.Q. Li [et al.] // Angewandte Chemie. – 2020. – V. 132. – № 8. – P. 3278–3283.

30. Khan, R. Impact of substitutional doping of Tl+ on optoelectronic and thermoelectric properties of NaF phosphor material / R. Khan, Q. Zhang, M. Idress [et al.] // J. of Physics and Chemistry of Solids. – 2023. – V. 172. – P. 111023.

31. Ding Y. High-efficiency steam reforming of methanol on the surface of a recyclable NiO/NaF catalyst for hydrogen production / Y. Ding, T. Zhang,Z.Ge [et al.] // Composites Part B: Engineering. – 2022. – V. 243. – P. 110113.

32. Chen, X. Electro-optical performance of all solid stateelectrochromic devices with NaF electrolytes / X. Chen, H. Zhang, W. Li [et al.] // Materials Letters. – 2022. – Vol. 324. – P. 132692.

33. Lai, X. Design optimization and thermal storage characteristics of NaNO₃-NaCl-NaF molten salts with high latent heat and low cost for the thermal energy storage / X. Lai, H. Yin, P. Li [et al.] // J. of Energy Storage. – 2022. – V. 52. – P. 104805.

34. Xin, M. White light KF-KYb₃F₁₀: Tm^{3+} nanocomposite upconversion phosphor synthesized by a hydrothermally treatment / M. Xin // Optical Materials. -2022. - V. 127. - P. 112303.

35. Belachew, K. Conversion of Mn^{2+} into Mn^{3+} in manganese ions doped KF-CaO-B₂O₃ glasses: Electrical and spectroscopic properties / K. Belachew, C. Laxmikanth, L. Fekede [et al.] // Physica B: Condensed Matter. – 2022. – V. 645. – P. 414225.

36. Eslam, A. Impact of substrate temperature during NaF and KF postdeposition treatments on chemical and optoelectronic properties of alkali-free $Cu(In, Ga)Se_2$ thin film solar cell absorbers / A. Eslam, R. Wuerz, D. Hauschild [et al.] // Thin Solid Films. – 2021. – V. 739. – P. 138979.

37. Noushin, A. KF Impregnated Natrolite Zeolite as a New Heterogeneous Nanocatalyst Promoted One-Pot Synthesis of Benzo [1, 4]-Diazepin-5-One Derivatives / A. Noushin, S. Z. Sayyed-Alangi, A. Varasteh-Moradi [et al.] // Polycyclic Aromatic Compounds. – 2021. – P. 1–16.

38. Mazur, N. Accelerating the reaction kinetics of K_2CO_3 through the addition of CsF in the view of thermochemical heat storage / N. Mazur, H. Huinink, H. Fischer[et al.] // Solar Energy. – 2022. – V. 242. – P. 256–266.

39. Wang, W. Additive manufacturing of Csf/SiC composites with high fiber content by direct ink writing and liquid silicon infiltration / W. Wang, X. Bai,
L. Zhang/ Ceramics International. – 2022. – V. 48. – № 3. – P. 3895–3903.

40. Chen, J. J. Effects of CSF on strength, rheology and cohesiveness of cement paste / J. J. Chen, W. W. S. Fung, A. K. H .Kwan // Construction and Building Materials. – 2012. – V. 35. – P. 979–987.

41. Yang, B. Investigation on water vapor adsorption performance of carbon-based composite adsorption material ACF-silica sol-LiCl / B. Yang, C. Wang, X. Ji[et al.] // Microporous and Mesoporous Materials. – 2022. – V. 344. – P. 112205.

42. Васильев, А. С. Процессы на твердом и жидких катодах в расплавах на основе хлорида лития / А. С. Васильев, В. И. Журавлев, Ю. Н.

Жиркова

[и др.] // Успехи в химии и хим. технологии. – 2020. – Т. 34, № 4. – С. 130– 134.

43. Першин, П. С. Поведение кислородпроводящих керамических материалов в расплавах хлорида лития / П. С. Першин, А. В. Суздальцев, А. И. Вальцева // Бутлеровские сообщения. – 2018. – Т. 56, № 10. – С. 84–91.

44. Бычков, А. В.. Восстановление оксидов урана литием в расплаве хлорида лития / А. В. Бычков, В. С. Ишунин, М. В. Кормилицын // Радиохимия. – 2009. – Т. 51, № 5. – С. 407–410.

45. Першин, П.С. Исследованиекислородопроводящих керамических материалов для расплава хлорида лития в реакторах пирохимической переработки ОЯТ / П. С. Першин, А. И. Вальцева, А. В. Суздальцев [и др.] // Современные проблемы теплофизики и энергетики. – 2020. – С. 438–439.

46. Santoro, S. Lithium recovery through WS₂ nanofillers-promoted solar photothermal membrane crystallization of LiCl / S. Santoro, M. Aquino, C. Rizza // Desalination. – 2023. – V. 546. – C. 116186.

47. Wei, Q. Orientation relationships in Cu/Nb bilayers deposited on (001) and (111) NaCl substrate / Q. Wei // Scripta Materialia. – 2022. – V. 220. – P. 114915.

48. Kim, E.K. KCl-assisted synthesis of hierarchically porous carbon materials from water-soluble 2-hydroxyethyl cellulose for high-performance green supercapacitors / E.K. Kim, H.S. Chang, B.M. Lee [et al.] // Sustainable Materials and Technologies. – 2022. – P. 520.

49. Guo, S. Recovery of metallic copper from waste printed circuit boards via H₃NO₃S-NaCl-H₂O₂ leaching system / S. Guo, J. He, L. Zhu [et al.] // Journal of Cleaner Production. – 2022. – V. 357. – P. 131732.

50. Nesterov, A. N. Combined effect of NaCl and sodium dodecyl sulfate on the mechanism and kinetics of methane hydrate formation in an unstirred system / A. N. Nesterov, A. M. Reshetnikov // J. of Natural Gas Science and Engineering. – 2022. – V. 99. – P. 104424. 51. Гостищев, В. В. Получение порошков молибдена и вольфрама алюминотермией их соединений в расплаве хлорида натрия/ В. В. Гостищев,
Р. Хосен, С. Н. Химухин [и др.] // Литьё и металлургия. – 2012. – № 3. – С. 143–145.

52. Гостищев, В. В. Получение порошка молибдена металлотермией его соединений в расплаве хлорида натрия / В. В. Гостищев, Р. Хосен, С. Н. Химухин [и др.] // Изв. вузов. Цветная металлургия. – 2010. – № 6. – С. 50–53.

53. Jang J. Cesium and strontium recovery from LiCl-KCl eutectic salt using electrolysis with liquid cathode / J. Jang, M. Lee, G. Y. Kim [et al.] // Nuclear Engineering and Technology. -2022. -T. 54. -N 10. -P. 3957–3961.

54. Shunkeyev, K. The enhancement of exciton-like luminescence in KCl single crystals under local and uniaxial elastic lattice deformation / K. Shunkeyev, A. Tilep, S. Sagimbayeva [et al.] // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2022. – V. 528. – P. 20–26.

55. Гасвиани, Н. А. Электровосстановление трифторида иттрия в расплаве хлорида калия / Н. А. Гасвиани, Д. И. Джапаридзе, Г. Н. Кипиани [и др.] // Электрохимия. – 2003. – Т. 39, № 7. – С. 876–879.

56. Михайлов, М. Д. Синтез наночастиц YVO₄: Еи в солевом расплаве и их люминесцентные свойства / М. Д. Михайлов, Д. В. Мамонова, И. Е. Колесников [и др.] // Современные проблемы науки и образования. – 2012. – № 5. – С. 326–326.

57. Wang, J. Effects of CsCl content on microstructure and mechanical properties of electrodeposited rhenium coatings in NaCl-KCl-CsCl molten salts / J. Wang, Z. Wang, Y. Ye [et al.] // Surface and Coatings Technology. – 2022. – P. 128554.

58. Novoselova, A. Electrode processes and electrochemical formation of Dy-Ga and Dy-Cd alloys in molten LiCl–KCl–CsCl eutectic / A. Novoselova, V. Smolenski, V. Volkovich [et al.] // Journal of Electroanalytical Chemistry. – 2022.
– V. 906. – P. 116012.

59. Yang, X. Topological properties of CsCl type superconducting materials / X. Yang, Y. Li, Z. Li [et al.] // Physics Letters A. – 2022. – V. 450. – P. 128385.

60. Sornumpol, R. Performance analysis and optimization of a trigeneration process consisting of a proton-conducting solid oxide fuel cell and a LiBr absorption chiller / R. Sornumpol, A. Arpornwichanop, Y. Patcharavorachot // International Journal of Hydrogen Energy. -2023. -V. 48, N 18. -P. 6837–6854.

61. Ma, X. Enhanced critical current density of Garnet Li₇La₃Zr₂O₁₂ solid electrolyte by incorporation of LiBr / X. Ma, Y. Xu // Electrochimica Acta. – 2022.
– V. 409. – P. 139986

62. Ma, Z. Preparation of micro-convex rough interface carbon aerogels with cellulose-lithium bromide (LiBr) molten salt hydrate gelled system and application of oil-water separation / Z. Ma, Y. Han, X. Xing [et al.] // Colloids and Surfaces A: Physicochemical and Engineering Aspects. – 2022. – V. 650. – P. 129624.

63. Алексеев, М. А. Современные методы производства синтетических волокон / М. А. Алексеев, А. О. Никитина // Современные научные исследования и инновации. – 2019. – № 11. – С. 4–4.

64. Загнитько, А. В. Равновесное распределение лантана, неодима и тория между расплавом хлористого лития и жидким висмутом / А. В. Загнитько, В. В. Игнатьев // Журн. физ. химии. – 2013. – Т. 87, № 4. – С. 558–558.

65. Xu, Y. Study on the effect of NaBr modification on CaO-based sorbent for CO_2 capture and SO_2 capture / Y. Xu, C. Shen, B. Lu [et al.] // Carbon Capture Science & Technology. – 2021. – V. 1. – P. 100015.

66. Wu, H. Oxidation of dextran using H_2O_2 and NaClO/NaBr and their applicability in iron chelation / H. Wu, D. C. Shang-Guan, Q. Lu [et al.] // International journal of biological macromolecules. – 2020. – V. 144. – P. 615–623.

67. Wang, K. Sorption of CO_2 on NaBr co-doped Li₄SiO₄ ceramics: Structural and kinetic analysis / K. Wang, Y. Zhao, P. T. Clough [et al.] // Fuel Processing Technology. – 2019. – V. 195. – P. 106143.

68. Li, J. Effect of KBr addition on photocatalytic performance of BiOBr /
J. Li, J. Gao, Y. Wu [et al.] // Chemical Physics Letters. – 2022. – V. 803. – P. 139790.

69. Chen, L. Hydrochromic CsPbBr₃-KBr Microcrystals for Flexible Anti-Counterfeiting and Wearable Self-Powered Biomechanical Monitoring / L. Chen,
M. He, L. Li [et al.] // Chemical Engineering Journal. – 2022. – V. 450. – P. 138279.

70. Кравченко, С. Е. Синтез наночастиц диборида циркония при взаимодействии ZrCl₄ и NaBH₄ в ионном расплаве бромида калия / С. Е. Кравченко, Д. Ю. Ковалев, И. И. Коробов // Журн. общей химии. – 2018. – Т. 88, № 8. – С. 1402–1404.

71. Кравченко, С. Е. Получение ZrB₂ взаимодействием ZrCl₄ с
NaBH₄ в расплаве бромида калия / С. Е. Кравченко, Д. Ю. Ковалев, И. И.
Коробов // Неорган. материалы. – 2019. – Т. 55, № 5. – С. 496–500.

72. Kimura, H. TSL and OSL properties of SPS-derived CsBr transparent ceramics doped with various concentrations of Eu / H. Kimura, T. Kato, M. Akatsuka [et al.] // Radiation Measurements. – 2020. – V. 135. – P. 106367.

73. Chen, S. CsBr interface modification to improve the performance of perovskite solar cells prepared in ambient air / S. Chen, J. Dong, J. Wu [et al.] // Solar Energy Materials and Solar Cells. – 2019. – V. 201. – P. 110110.

74. Zhang, J. Compositional dependency of upconversion luminescence of Nd³⁺ doped Ge–Ga–S–CsBr chalcohalide glasses / J. Zhang, C. Liu, H. Tao [et al.] // J. of non-crystalline solids. – 2014. – V. 406. – P. 27–30.

75. Малышев, В. В. Механизмы электровосстановления и электроосаждение покрытий металлов VI-А группы из ионных расплавов / В.
В. Малышев // Физикохимия поверхности и защита материалов. – 2009. – Т. 45, № 4. – С. 339–357.

76. Ding, M. Construction of highly stable LiI/LiBr-based nanocomposite cathode via triple confinement mechanisms for lithium-halogen batteries / M. Ding, R. Shi, J. Qu [et al.] // Chinese Chemical Letters. – 2023. – V. 34, № 11. – P. 108248.

77. Miyazaki, R. Reverse Monte Carlo analysis of NaI-LiI solid electrolyte based on the neutron total scattering data / R. Miyazaki, K. Ikeda, N. Kitamura [et al.] // Materials Today Communications. – 2022. – V. 32. – P. 104014.

78. Wang, G. Hydrolysis-resistant and Anti-dendritic halide composite Li₃PS₄-LiI solid electrolyte for all-solid-state lithium batteries / G. Wang, C. Lin, C. Gao [et al.] // Electrochimica Acta. – 2022. – V. 428. – P. 140906.

79. Yue, S. Optimization of crystal growth and properties of γ -CuI ultrafast scintillator by the addition of LiI / S. Yue, M. Gu, X. Liu // Materials Research Bulletin. – 2018. – V. 106. – P. 228–233.

80. Zhang, Z. Effects of irradiation defects on the electronic structure and optical properties of LiI scintillator / Z. Zhang, M. Li, K. Chen [et al.] // Optical Materials. – 2021. – V. 112. – P. 110727.

81. Jayanthi, S. Effect of nano TiO_2 on the thransport, structural and thermal properties of PEMA-NaI solid polymer electrolytes for energy storage devices / S. Jayanthi, S. Shenbagavalli, M. Muthuvinayagam [et al.] // Materials Science and Engineering: B. – 2022. – V. 285. – P. 115942.

 Miyazaki, R. All-solid-state lithium battery using a NaI-based Li+ conductor / R. Miyazaki, T. Hihara // Materials Letters. – 2022. – V. 312. – P. 131646.

83. Maeng, S. Detection efficiency evaluation for low energy of a NaI (Tl) scintillation detector / S. Maeng, S. H. Lee, S. J. Park [et al.] // Radiation Physics and Chemistry. – 2022. – V. 199. – P. 110325.

84. Misned, G. A. L. A closer look at the efficiency calibration of LaBr₃ (Ce) and NaI (Tl) scintillation detectors using MCNPX for various types of nuclear

investigations / G. A. L. Misned, H. M. H. Zakaly, F.T. Ali [et al.] // Heliyon. – 2022. – V. 8, № 10. – P. 10839.

85. Pastore, G. An efficient synthesis of bio-based Poly (urethaneacrylate) by SiO₂-Supported CeCl₃· $7H_2O$ -NaI as recyclable Catalyst / G. Pastore, S. Gabrielli, R. Giacomantonio [et al.] // Results in Materials. – 2022. – V. 15. – P. 100294.

86. Tang, M. Mikania micrantha extract/KI blend as a novel synergistic inhibitor for steel corrosion in concentrated H₃PO₄ solution / M. Tang, S. Deng, G. Du [et al.] // Industrial Crops and Products. – 2023. – V. 193. – P. 116237.

87. Ukaga, I.C. The inhibitive performance of 2, 3-pyrazine dicarboxylic acid and synergistic impact of KI during acid corrosion of 70/30 and 90/10 coppernickel alloys / I.C. Ukaga, P.C. Okafor, I.B. Onyeachu [et al.] // Materials Chemistry and Physics. – 2023. – V. 296. – P. 127313.

88. Yang, X. Structural adjustment on fluorinated graphene and their supercapacitive properties in KI-additive electrolyte / X. Yang, W. Feng, X. Wang [et al.] // J. of Electroanalytical Chemistry. – 2023. – V. 928. – P. 117010.

89. Nagano, S., Maruoka K. Synthesis of acyl fluorides from carboxylic acids with KI/AgSCF₃ for efficient amide and peptide synthesis / S. Nagano, K. Maruoka // Advanced Synthesis & Catalysis. -2023. -V. 365, N 3. -P. 295–300.

90. Li, Y. KI-Catalyzed Oxidative Cyclization of Enamines and t BuONO to Access Functional Imidazole-4-Carboxylic Derivatives / Y. Li, J. Qiu, P. Gao [et al.] // The Journal of Organic Chemistry. – 2022. – V. 87, № 22. – P. 15380-15388.

91. Benderitter, M. Potassium iodide (KI) prophylaxis in the case of a nuclear accident: A new marketing authorization in France / M. Benderitter, F. Caire-Maurisier, C. Crambes [et al.] // Environmental Advances. – 2022. – V. 9. – P. 100293.

92. Cheng, N. A modified two-step sequential spin-coating method for perovskite solar cells using CsI containing organic salts in mixed ethanol/methanol

solvent / N. Cheng, Z. Yu, W. Li [et al.] // Solar Energy Materials and Solar Cells. – 2023. – V. 250. – P. 112107.

93. Takizawa, Y. Growth of thallium-doped CsI/CsCl/KCl eutectics and their scintillation properties / Y. Takizawa, K. Kamada, M. Yoshino [et al.] // Optical Materials: X. – 2022. – V. 15. – P. 100159.

94. Li, C. Development of EJ-260/CsI (Tl) phoswich detector for β – γ discrimination / C. Li, H. Qu, J. Lu [et al.] // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 2022. – V. 1044. – P. 167505.

95. Luo, H. Selective recovery of lithium from mother liquor of Li_2CO_3 by synergistic hydrophobic deep eutectic solvents: Performance and mechanistic insight / H. Luo, H. Yao, X. Wang [et al.] // Separation and Purification Technology. – 2023. – V. 313. – P. 123353.

96. Li, H. Selective recovery of lithium from simulated brine using different organic synergist / H. Li, L. Li, X. Peng [et al.] //Chinese Journal of Chemical Engineering. – 2019. – V. 27, No 2. – P. 335–340.

97. Tang, C. Effect of perovskite composition regulation on its crystallization in SiO₂-Al₂O₃-Li₂CO₃-AlF₃-LiF glass system / C. Tang, F. Lei, X. Ji [et al.] // Optical Materials. – 2022. – V. 131. – P. 112674.

98. Quang, D. A. Enhanced piezoelectric properties of Fe₂O₃ and Li2CO3 co-doped Pb[$(Zr_{0.48}Ti_{0.52})_{0.8}(Zn_{1/3}Nb_{2/3})_{0.125}(Mn_{1/3}Nb_{2/3})_{0.075}$]O₃ ceramics for ultrasound transducer applications / D. A. Quang // Journal of Science: Advanced Materials and Devices. – 2022. – V. 7, No 2. – P. 100436.

99. Dong, L. A Li₂CO₃ sacrificial agent for anode-free lithium metal batteries / L. Dong, S. Zhang, D. Song [et al.] // Chemical Engineering Journal. – 2023. – V. 454. – P. 140029.

100. Navarrete, N. K_2CO_3 -Li₂CO₃ molten carbonate mixtures and their nanofluids for thermal energy storage: an overview of the literature / N. Navarrete, U. Nithiyanantham, L. Hernandez [et al.] // Solar Energy Materials and Solar Cells. – 2022. – V. 236. – P. 111525.

101. Pan, G. Thermal performance of a binary carbonate molten eutectic salt for high-temperature energy storage applications / G. Pan, X. Wei, C. Yu [et al.] // Applied Energy. – 2020. – V. 262. – P. 114418.

102. Палатников, М. Н. Получение и свойства кристаллов ниобата лития, выращенных из расплавов конгруэнтного состава, легированных бором / М. Н. Палатников, И. В. Бирюкова, О. В. Макарова [и др.] // Тр. Кольского научн. центра РАН. – 2015. – № 31. – С. 434–438.

103. Малышев, В. В., Габ А. И. Высокотемпературные гальванические покрытия молибдена и вольфрама и их карбидов из ионных расплавов, электроосаждение из галагенидно-оксидных и оксидных расплавов /В. В. Малышев, А. И. Габ // Физикохимия поверхности и защита материалов. – 2011. – Т. 47, № 5. – С. 525–533.

104. Кушхов, Х. Б., Карданов А. Л., Адамокова М. Н.
Электрохимический синтез двойных карбидов молибдена и вольфрама (Мо, W)₂C из вольфраматно-молибдатно карбонатных расплавов / Х.Б. Кушхов, А. Л. Карданов, М.Н. Адамокова // Расплавы. – 2012. – № 4. – С. 65–73.

105. Yu, Y. Prediction of thermal transport properties for Na_2CO_3 /Graphene based phase change material with sandwich structure for thermal energy storage / Y. Yu, S. Tang, H. Tian [et al.] // International Journal of Heat and Mass Transfer. – 2023. – V. 205. – P. 123901.

106. Liu X. Preparation and thermal property characterization of NaCl– Na₂CO₃–Na₂SO₄ eutectic salt mixed with carbon nanomaterials for heat storage / X. Liu, Z. Kang, J. Zhao [et al.] // Solar Energy Materials and Solar Cells. – 2023. – V. 251. – P. 112173.

107. Jiao, F. Efficient adsorption and porous features from activated carbon felts activated by the eutectic of Na₂CO₃ and K₂CO₃ with vapor / F. Jiao, H. Sang, P. Guo [et al.] // Chemical Physics Letters. – 2022. – V. 803. – P. 139831.

108. Коровин, В. А. Карбонатные смеси Са, Ва, Sr и Na для рафинирования и модифицирования расплава латуни / А. В. Коровин, Т. Д. Курилина, О. В. Токарникова // Цветные металлы. – 2016. – № 8. – С. 75–79.

109. Шапошников В. В. Экспериментальное изучение условий плавления модельного гранита в присутствии щелочно-карбонатных растворов при давлении 400 МПа / В. В. Шапошников, Л. Я. Аранович // Геохимия. – 2015. – № 9. – С. 855–855.

110. Zhao, Q. Sorption characteristics of K₂CO₃-based thermochemical material for thermal energy storage / Q. Zhao, J. Lin, H. Huang [et al.] // Energy Reports. – 2022. – V. 8. – P. 129–136.

111. Sang, L. Investigation of KNO_2 - KNO_3 - K_2CO_3 mixed molten salts with higher working temperature for supercritical CO_2 concentrated solar power application / L. Sang, X. Lv, Y. Wang [et al.] // J. of Energy Storage. – 2023. – V. 61. – P. 106724.

112. Supramono, D. Syngas production from lignite coal using K_2CO_3 catalytic steam gasification with controlled heating rate in pyrolysis step / D. Supramono, D. Tristantini, A. Rahayu [et al.] // Procedia Chemistry. – 2014. – V. 9. – P. 202–209.

113. Cao, Y. MgOCNTK₂CO₃ as a superior catalyst for biodiesel production from waste edible oil using two-step transesterification process / Y. Cao, H. A. Dhahad, H. Esmaeili [et al.] // Process Safety and Environmental Protection. -2022. -V. 161. -P. 136–146.

114. Досмухамедов, Н. К. Поведение NO_X при очистке отходящих газов ТЭС карбонатным расплавом щелочных металлов / Н. К. Досмухамедов, М. Г. Егизеков, Е. Е. Жолдасбай [и др.] // Межд. журнал прикладных и фундаментальных исследований. – 2021. – № 1. – С. 30–34.

115. Сонин, В. М. Поверхностная графитизация алмаза в расплаве К₂СО₃ при высоком давлении / В. М. Сонин, А. И. Чепуров, Е. И. Жимулев [и др.] // Докл. РАН. – Федеральное государственное бюджетное учреждение" Российская академия наук", 2013. – Т. 451, № 5. – С. 556–556.

116. Сафронова, Т. В. Керамика на основе гидроксиапатита кальция, синтезированного из ацетата кальция и гидрофосфата калия /Т. В.

Сафронова, С. А. Корнейчук, В. И. Путляев [и др.] // Стекло и керамика. – 2008. – № 4. – С. 19–24.

117. Raoui, Y. Interfacial modification of perovskite solar cells via Cs₂CO₃: Computational and experimental approach / Y. Raoui, M. Pegu, S. Kazim [et al.] // Solar Energy. – 2021. – V. 228. – P. 700–705.

118. Chen, L. C. Enhancing device performance of CsPbBr₃ perovskite light-emitting diodes with Cs_2CO_3 modification layer and dual additives / L. C. Chen, C. H. Tien, K. Y. Lee [et al.] // Materials Science in Semiconductor Processing. – 2022. – V. 148. – P. 106815.

119. Muralidhar, P. A novel method for the synthesis of 3-aminoindoles using iodine and Cs_2CO_3 as catalyst / P. Muralidhar, B. S. Kumar, K. Nagaraju [et al.] // Chemical Data Collections. – 2021. – V. 33. – P. 100731.

120. Wang, D. Unsymmetrical Disulfides Synthesis via Cs₂CO₃-Catalyzed Three-Component Reaction in Water / D. Wang, Y. Gao, Y. Tong [et al.] // Advanced Synthesis & Catalysis. – 2020. – V. 362, № 22. – P. 4991–4995.

121. Петров, И. А. Совершенствование технологии модифицирования силуминов / И. А. Петров, А. Д. Шляпцева, А. П. Ряховский [и др.] // Новости материаловедения. Наука и техника. – 2013. – № 6. – С. 7–7.

122. Новоженов, В. А. Термический анализ: учебник и практикум для вузов / В. А. Новоженов, Н. Е. Стручева. – М.: Изд-во Юрайт, 2024. – 440 с.

123. Трунин, А.С. Визуально-политермический метод / А.С. Трунин,Д. Г. Петрова. – Куйбышев: Изд-во КпТи, 1977. – 93 с.

124. Хан, Э. В. Метод модифицированного визуально политермического анализа для исследования фазовых диаграмм расплавных систем / Э. В. Хан, А. Б. Кузнецов // Геология. – 2020. – С. 71–71.

125. Данилов, В. П. Применение физико-химического анализа при разработке и исследовании противогололедных реагентов / В. П. Данилов, Е. А. Фролова, Д. Ф. Кондаков [и др.] // Журн. неорг. химии. – 2019. – Т. 64, № 9. – С. 984–987.

126. Авдин, В. В. Новый способ обработки данных дифференциального термического анализа / В. В. Авдин, А. А. Лымарь, А. В. Батист // Вестн. Южно-Уральского гос. ун-та. Серия: Математика. Механика. Физика. – 2006. – № 7. – С. 211–214.

127. Шаталова, Т. Б. Методы термического анализа / Т. Б. Шаталова, О. А. Шляхтин, Е. И. Веряева. – Москва: МГУ им. Ломоносова, 2011. – 300 с.

128. Термический анализ сульфированного фталоцианина меди / Ж. Б.
Файзиев, С. И. Назаров, Н. И. Назаров [и др.] // Universum: химия и биология.
– 2022. – № 100. – С. 41–44.

129. Дорошко, Г. П. Доверительное оценивание дифференциальнотермического анализа KNO₃ по ТмА / Г. П. Дорошко, А. С. Трунин, П. В. Косинский // Актуальные проблемы соврем. науки. естеств. науки. – 2013. – С. 52–58.

130. Чуднов, И. В. Особенности исследования свойств гибридных полимерных связующих методом дифференциально-сканирующей калориметрии / И. В. Чуднов, Э. Ш. Ахметова, Г. В. Малышева // Материаловедение. – 2013. – № 5. – С. 22–25.

131. Фасеева, Г. Р. Термогравиметрия и дифференциальная сканирующая калориметрия обжига полноформатного керамического кирпича / Г. Р. Фасеева, И. Э. Мумджи, Л. Р. Гилязов [и др.] // Вестн. Казанского технол. ун-та. – 2017. – Т. 20, № 3. – С. 68–71.

132. Емелина А. Л. Дифференциальная сканирующая калориметрия //М.: МГУ. – 2009. – С. 42.

133. Шляхова, А. Г. Дифференциально-сканирующая калориметрия для контроля качества арсенида галлия /А. Г. Шляхова // Изв. вузов. Проблемы энергетики. – 2006. – №.11–12. – С. 104–107.

134. Анимица, И. Е. Электрические свойства и термогравиметрия
браунмиллеритов на основе оксидов бария / И. Е. Анимица, Н. А. Кочетова,
А. Р. Шайхлисламова // Электрохимия. – 2007. – Т. 43, № 6. – С. 743–748.

135. Виноградов, В. В. Физико-химические методы исследования материалов: учебное пособие / В. В. Виноградов, А. В. Виноградов, М. И. Морозов; Университет ИТМО Санкт-Петербург: Изд-во Университета ИТМО, 2019. – 72 с.

136. Малько, М. Новый метод анализа термогравиметрических данных / М. Малько, С. Василевич, А. Митрофанов [и др.] // Изв. высших учебных заведений. Химия и хим.технология. – 2021. – Т. 64. – № 3. – С. 24–32.

137. Феоктистов, А. В. Термогравиметрический анализ изменения параметров литейного кокса и антрацита / А. В. Феоктистов, Н. Ф. Якушевич, В. М. Страхов [и др.] // Изв. вузов. Черная металлургия. – 2016. – Т. 58, №. 11. – С. 837–845.

138. Максимова, Л. Н. Количественный рентгенофазовый анализ электролитов методами калибровок и Ритвельда / Л. Н. Максимова, С. Н. Архипов, Л. А. Пьянкова [и др.] // Заводская лаборатория. Диагностика материалов. – 2017. – Т. 83, № 4. – С. 37–43.

139. Агеева, Е. В. Рентгеноструктурный анализ алюминиевого электроэрозионного порошка, полученного в дистиллированной воде / Е. В. Агеева, Е. П. Новиков, Е. В. Агеев // Изв. Юго-Западного гос. ун-та. – 2016. – №. 5. – С. 8–15.

140. Цыбуля, С. В. Рентгеноструктурный анализ ультрадисперсных систем: формула Дебая / С. В. Цыбуля, Д. А Яценко // Журн. структурной химии. – 2012. – Т. 53, №. S7. – С. 155–171.

141. Ковба, Л. М., Трунов В. К. Рентгенофазовый анализ. – МГУ, 1976. – С. 232.

142. Еремин, А. В. Современные подходы к рентгенофазовому анализу гипсовых вяжущих / А. В. Еремин, А. П. Пустовгар // Строительные материалы. – 2012. – №. 7. – С. 62–63.

143. Барнаков, Ч. Н. Рентгенофазовый анализ кристаллической структуры графитов разной природы / Ч. Н. Барнаков, Г. П. Хохлова, В. Ю. Малышева [и др.] // Химия твердого топлива. – 2015. – № 1. – С. 28–32.

144. Якимов, И. С. Регуляризация методов бесстандартного рентгенофазового анализа / И. С. Якимов, П. С. Дубинин, А. Н. Залога [и др.] // Журн. структурной химии. – 2011. – Т. 52, № 2. – С. 329–335.

145. Мартынова, Н.С. Расчет температуры плавления тройной эвтектики простой эвтектической системы по данным о бинарных эвтектиках и компонентах / Н.С. Мартынова, М. П. Сусарев // Журн. прикл. химии. – 1971. – Т. 44. – С. 2643–2646.

146. Мартынова, Н.С. Расчёт состава тройной эвтектики простой эвтектической системы по данным о бинарных эвтектиках и компонентах. / Н.С. Мартынова, М. П. Сусарев / Журн. прикл. химии. – 1971. – Т. 44. – С. 2647–2651.

147. Трунин, А.С. Алгоритм моделирования характеристик эвтектик по методу Мартыновой – Сусарева / 4-ая Международная конференция молодых ученых «Актуальные проблемы современной науки». – Самара, 2003. – С. 44–48.

148. Свидетельство о государственной регистрации программы для ЭВМ № 2006612377 Российская Федерация. Программный комплекс для моделирования фазовых диаграмм «состав-температура» и «состав-ток» в физико-химическом анализе солевых металлических N⁰ И систем: 2006612377: заявлено 05.09.2006, Бюл N⁰ 4 / Мощенская Е.Ю.: правообладатель Федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет". – Зарегистрировано в Реестре программ ЭВМ.

149. Глушко, В. П. Термические константы веществ. Справочник. / Под ред. В.П. Глушко. – М.: ВИНИТИ. – 1981. – Вып. Х. – Ч. 1. – 300 с.

150. Глушко, В. П. Термические константы веществ. Справочник. / Под ред. В.П. Глушко. – М.: ВИНИТИ. – 1981. – Вып. Х. – Ч. 2. – 300 с.

151. Воскресенская, Н.К. Справочник по плавкости систем из безводных неорганических солей. / Н.К. Воскресенская, Н.Н. Евсеева, С.И. Беруль, И.П. Верещатина – М.: Изд-во АН СССР. – 1961. – Т. 1. – 845 с.

152. Посыпайко, В.И. Диаграммы плавкости солевых систем. Ч. III. Двойные системы с общим катионом. / В.И. Посыпайко, Е.А. Алексеева – М.: Металлургия. – 1979. – 204 с.

153. Посыпайко, В.И. Диаграммы плавкости солевых систем. Ч. II. Двойные системы с общим анионом. / В.И. Посыпайко, Е.А. Алексеева. – М.: Металлургия. – 1977. – 416 с.

154. Посыпайко, В. И. Диаграммы плавкости солевых систем. Тройные взаимные системы. // Под ред. В.И. Посыпайко, Е.А. Алексеевой. – М.: Химия. – 1977. – 392 с.

155. Васина, Н.А. Теплофизические свойства многокомпонентных солевых систем. / Н.А. Васина, Е.С. Грызлова, С.Г. Шапошникова. – М.: Химия. – 1984. – 112 с.

156. Финогенов, А. А. Фазовые равновесия в системах NaCl–NaBr– Na₂CO₃ и NaCl–NaBr–Na₂SO₄ / А. А. Финогенов, И. К. Гаркушин, Е. И. Фролов // Физика и химия стекла. – 2022. – Т. 48, № 6. – С. 783–790.

157. Финогенов, А. А. Фазовые равновесия в трехкомпонентной солевой системе NaI-Na₂CO₃-Na₂SO₄ / Сб. студенческих работ Всеросс. научно-практической междисциплинарной конф. "Молодежь. Наука. Общество". – Тольятти, 2018. – С. 636–637.

158. Финогенов, А. А. Определение составов и удельных энтальпий плавления в солевых системах с участием карбонат-аниона / А. А. Финогенов, Е. И. Фролов // Физика. Технологии. Инновации. – Екатеринбург, 2019. – С. 681-683.

159. Фролов, Е. И. Вид фазовых равновесий в ряду систем NaX-NaBr-Na₂SO₄ (X-F, Cl, I) / Е. И. Фролов, А. А. Финогенов, И. К. Гаркушин // Физика. Технологии. Инновации. – Екатеринбург, 2020. – С. 751-752. 160. Патент № 2778349 Российская Федерация, МПК Н01М 6/36 (2006.01), Н01М 6/20 (2006.01). Расплавляемый электролит для химического источника тока: № 20211193104: заявлено 30.06.2021: опубликовано 04.03.2024, Бюл. №7 / Финогенов А. А., Гаркушин И. К., Фролов Е. И.; заявитель и патентообладатель Федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет". – 5 с.

161. Фролов, Е.И. Фазовые равновесия в системе LiBr–Li₂CO₃–Li₂SO₄
и анализ систем LiHal–Li₂CO₃–Li₂SO₄ (Hal=F, Cl, Br, I) / Е.И. Фролов, А.А.
Финогенов, И.К. Гаркушин [и др.]// Журн. неорг. химии. – 2020. – Т. 65., № 3.
– С. 384–390.

162. Frolov, E. I. A study of phase equilibria in systems of sodium salts in the presence of solid solutions / E. I. Frolov, A. A. Finogenov, I. K. Garkushin // AIP Conference Proceedings. -2022. -T. 2466, No 1. -P. 060005.

163. Сырова, В.И. Сырова Топология ликвидусов систем NaBr– Na₂SO₄–Na₂CO₃ и KBr–K₂CO₃–K₂SO₄ / В.И. Сырова, И.К. Гаркушин, Е.И. Фролов [и др.] // Журн. физ. химии. – 2020. – Т. 94, № 6. – С. 850–854.

164. Финогенов, А. А. Исследование фазовых равновесий в системе Li,Na||Br,CO₃ / А. А. Финогенов, И. К. Гаркушин, Е. И. Фролов // XII Межд. Курнаковское совещание со физико-химическому анализу. – Санкт-Петербург, 2022. – С. 29.

165. Морачевский, А. Г. Электропроводность, плотность и вязкость индивидуальных расплавленных солей / А. Г. Морачевский. – Ленинград: Издательство «Химия», 1971. – 168 с.

Приложение

175