Министерство науки и высшего образования РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (ФГБОУ ВО «ИРНИТУ»)

664074 Россия, Иркутск, ул. Лермонтова, 83 телефон: +7(3952)405-000, факс: +7(3952)405-100 E-mail: info@istu.edu
ОКПО 02068249, ОГРН 1023801756120

______N₂ _____

ИНН/КПП 3812014066/381201001

УТВЕРЖДАЮ

Проректор по научной работе ФГБОУ ВО «Иркутский национальный исследовательский технический университет» кандидат геолого-минералогических наук,

профессор

А.М. Кононов

ОТЗЫВ

Ведущей организации федерального государственного бюджетного образовательного учреждения высшего образования «Иркутский национальный исследовательский технический университет», г. Иркутск, на диссертационную работу Подгорнего Александра Сергеевича на тему «Разработка методологии управления качеством автомобилей на этапах жизненного цикла по параметрам электромагнитной совместимости», представленную на соискание ученой степени доктора технических наук по Управление специальности 2.5.22. качеством. Стандартизация. Организация производства

Актуальность темы диссертационной работы

Развитие мирового автомобилестроения идет по пути создания продукции имеющей потенциально высокое качество по всем основным аспектам. В то же время текущий уровень развития научно-технического прогресса, предопределяет возможности обеспечения этого самого качества продукции. С автомобильной сегодняшних позиций, высокое качество техники конструкций обеспечивается счет насыщения сложными за электротехническими компонентами и системами, которые приходят на смену И если говорить совсем напрямую, TO современные традиционным.

> Входящий № <u>106 - 9510</u> Дата 31 ОКТ 2025 Самарский университет

008783

электромобильные технологии с точки зрения развития конструкций практически в полной мере идут на смену технологиям, которые мы привыкли видеть при рассмотрении автомобилей имеющих традиционную конструкцию, например мы привыкли к двигателю внутреннего сгорания, а на его смену приходит электропривод колеса. И наука и практика управления качеством в машиностроении в общем, и в автомобилестроении в частности была выстроена на парадигме традиционных конструкций транспортных средств.

Если говорить шире, то сегодня вопрос развития электротехнологий на транспорте не ограничивается автомобильной техникой, нужно смотреть шире. Разработка авиационной техники, морского и речного транспорта и т.д., все это претерпевает самые существенные изменения в связи с развитием электротехнического оборудования и электроники. И в этих отраслях, существует такая же проблема что и в автомобилестроении — необходимо адаптировать существующий инструментарий управления качеством на этапах жизненного цикла продукции, создавать принципиально новый инструментарий управления, более полно обеспечивающий не закрытые зоны ответственности производителя перед потребителем.

А что скрывается за определением нового инструментария управления качеством? Вот на этот вопрос в достаточной мере, с позиции развития базы инструментов управления, отвечает диссертационная работа Подгорнего А.С. В работе предлагается разработка методологии управления качеством автомобилей на этапах жизненного цикла по параметрам электромагнитной совместимости. Диссертант рассматривает продукт в целом, то есть автомобиль. Автомобиль можно представить как совокупность связанных сложных систем, функционирующих во внешней среде. Автомобиль как цельный продукт предназначен для эксплуатации конечным потребителем, который судит о конкурентоспособности и качестве автомобиля по его отказам, поломкам, удобству, экологичности и прочим важным факторам. Для потребителя не

обязательно понимание конструкции автомобиля, например в части состава систем, для него важны эксплуатационные и потребительские качества. Именно такой подход к автомобилю при его проектировании и обеспечении эффективности жизненного цикла используют современные автопроизводители, поскольку они занимаются развитием конкурентоспособности своей продукции. Развитие качества автомобиля как цельного продукта, сегодня необходимо рассматривать с точки зрения вопросов создания прогрессивных компонентов обеспечивающих требуемый уровень качества и взаимного влияния в составе продукта, рационализации распределения и монтажа, обеспечения такого баланса вложений в качество, при котором продукт будет интересен потребителю с точки зрения первичной цены покупки и вторичной цены владения. Качество цельного продукта, в том числе в связи с развитием электромобилестроения, требований к безопасности и эксплуатационной эффективности нужно рассматривать и с позиции инфраструктурного развития сервисов автопроизводителей, таких как инфокоммуникационного обеспечения эффективности эксплуатации, дистанционной диагностикой и оценкой качества, традиционного автосервиса. Все вышеперечисленное требует однозначной формализации в рамках постоянно развивающейся системы стандартизации. Конечно, меняются и внешние факторы эксплуатации. Известно, что сам автомобиль является источником помех, и развитие его конструкции с позиции насыщения электрокомпонентами в определенной степени влияет на это негативно. При этом и внешняя среда эксплуатации также меняется не в лучшую сторону, поскольку мы наблюдаем процесс самого существенного развития электропотребления.

Вот они вызовы текущего момента, которые довольно остро влияют на развитие качества автомобиля. И в этих условиях, должны быть обеспечены условия по созданию и внедрению адекватных инструментов управления качеством автомобилей по выделенным аспектам. Сегодня таких, в полной мере

адекватных инструментов управления качеством нет. Да, есть инструменты обеспечения, есть требования, но они работают на отдельных этапах жизненного цикла и не охвачены системой, они фрагментарны. Они заточены на контроль и реактивность, в то время как требуется проактивность и постоянное системное улучшение. И эта проблема в том числе связана со спецификой выделенной научно-технической проблемы в диссертации. Весь имеющийся арсенал инструментов управления качеством был построен в условиях другой парадигмы технического развития, когда в конструкции автомобилей доминировали системы другой природы – механической, гидравлической И пр. Нужно системно модернизировать, инструменты, а также создавать новый аппарат управления качеством, через отраслевой фундамент стандартов менеджмента качества ISO 9001 и IATF 16949 под новые условия развития отрасли автомобилестроения. Именно в этом и заключается актуальность диссертационной работы Подгорнего Александра Сергеевича.

Научную новизну исследования составляют следующие основные параметры:

- на основе четкой позиции выработанной в процессе актуализации научнотехнической проблемы, автор проводит детализированный анализ практически всех современных инструментов управления конкурентоспособностью и формирования автомобилей прицелом ИХ адаптации качеством дополнительного инструментария обеспечивающего создание системной методологии управления качеством автомобилей на этапах жизненного цикла обладающей свойством сквозного управления. В результате работы предложена графическая интерпретация системной сквозной методологии управления качеством автомобилей по параметрам электромагнитной совместимости, которая работает на этапах проектирования, производства, эксплуатации и формализацией В виде стандартов И инструкций сопровождается

обеспечивающих гарантированное качество процессов и продукции. Концепция нацелена не только на повышение конкурентоспособности и качества автомобилей традиционных конструкций, она дает однозначный ответ на запрос о формировании инструментов управления применительно к электромобилям, автомобилям с комбинированными энергоустановками и автономным транспортным системам (беспилотникам);

- основе текущих проблем анализа отраслевых связанных фрагментарностью при определении требований к качеству продукции по параметрам электромагнитной совместимости, применительно и к параметрам, условиям и пр. заложенным в международных, национальных и корпоративных стандартах с позиции качества автомобиля по параметрам электромагнитной совместимости предложены новые инструменты организации процесса испытаний при проектировании и в производстве продукции, в том числе подразумевающие развитие базы индикаторов оценки качества продукции;
- актуализированы, обоснованы И предложены усовершенствованные инструменты оценки качества автомобилей на этапах жизненного цикла, позволяющие формировать объективную и более широкую оценку показателей качества при проведении операций технического контроля новых автомобилей, а также формировать электронные базы определяющие функциональное состояние автомобиля при различных внешних электромагнитных воздействиях, для обеспечения формализации и создания программных алгоритмов управления качеством функционирования автомобилей в период эксплуатации посредством инструментов предиктивного управления;
- предложен целый ряд научно-инженерных методов и инструментов управления и улучшения качества автомобилей, построенный на основе предложенных ранее инструментов формирования электронных баз функционального состояния качества автомобиля, при различных воздействиях реализованные в виде инструментария предиктивного управления. Также

предложен комплекс конструкторских решений направленный на создание высококачественного автомобиля по параметрам электромагнитной совместимости, который учитывает взаимодействие основных систем транспортного средства, формирует базу возможных конструкторских решений на основе подходов по функциональному и структурному резервированию;

- предложены технические решения по совершенствованию качеством автомобилей по управления параметрам электромагнитной совместимости работающие как на уровне объекта – автомобиля, так и работающие на уровне автопроизводителя. Здесь автором предложены решения связанные с развитием системы управления автомобилем посредством интеграции модуля электромагнитной совместимости в состав автомобиля, который обеспечивает сбор, обработку и передачу информации о текущем состоянии эксплуатационного качества автомобиля. Передача информации подразумевает создание инфокоммуникационной сети автопроизводителя, в которой накапливаются данные отражающие текущее состояние качества всех эксплуатируемых объектов – автомобилей. Система управления качеством в таких условиях должна развиваться до уровня проактивного анализа и детализации сообщений поступающих от всех эксплуатируемых объектов и подразумевает целый спектр возможных решений от формирования списка проблем качества, который необходим автопроизводителю для повышения конкурентоспособности и качества продукции, а также запросов к конкретным необходимостью объектам (автомобилям) связанным C проведения и ремонта в условиях сертифицированного технического обслуживания спецавтоцентра автопроизводителя;
- автором предложен инструментарий определяющий процесс системного развития вопросов стандартизации, который в условиях проактивного управления качеством автомобилей на этапах жизненного цикла способен более

объективно и достоверно определять границы допустимого изменения параметров качества (электромагнитной совместимости).

Практическая значимость результатов работы состоит в том что предложенная научно-прикладная методология управления качеством автомобилей по параметрам электромагнитной совместимости B виле конкретных технических решений прошла успешную апробацию и внедрение в практику ведущих автопроизводителей нашей страны ПАО «КАМАЗ», АО «АВТОВАЗ». Представляется, что наиболее ценный практический вклад работы заключается в формировании инженерных инструментов оценки качества, вероятностного моделирования нарушения качества, созданию подходов к повышению эффективности проектирования, производства автомобильной техники направленных на улучшение эксплуатационного качества, что создает прямую связь повышением конкурентоспособности C отечественного автомобилестроения.

Степень обоснованности и достоверности научных положений, выводов и рекомендаций

Корректное применение методов математического моделирования, аппарата математической статистики, экспертных методов оценки, обеспечивают обоснованность и достоверность полученных в диссертационной работе Подгорнего А.С. научно-практических результатов.

Автор диссертации провел комплексный критический анализ и обобщил наиболее важные проблемы сложившиеся в отрасли автомобилестроения, связанные с активным насыщением конструкций автомобилей электротехническими и электронными компонентами и необходимостью создания адекватных инструментов определяющих опережающее развитие инструментов управления качеством и конкурентоспособностью.

Диссертационная работа Подгорнего Александра Сергеевича представляет собой логический, целостный научный труд, посвященный

разработке методологии управления качеством автомобилей, на этапах жизненного цикла по параметрам электромагнитной совместимости.

Результаты диссертации широко докладывались и обсуждались на целом ряде крупных конференций, имеющих международный и отечественный статус. Основные, наиболее важные результаты научной работы опубликованы в ведущих отраслевых изданиях, что в полной мере подтверждает обоснованность и достоверность полученных положений. Диссертационная работа соответствует паспорту специальности 2.5.22. - Управление качеством. Стандартизация. Организация производства.

Соответствие автореферата диссертационной работе

Автореферат в полной мере соответствует диссертационной работе.

Общая оценка диссертационной работы

Диссертационная работа Подгорнего Александра Сергеевича на соискание ученой степени доктора технических наук по специальности 2.5.22. - Управление качеством. Стандартизация. Организация производства выполнена на высоком научном уровне. В диссертационной работе решена крупная отраслевая научно-прикладная проблема, связанная с необходимостью развития системных инструментов управления конкурентоспособностью и качеством современных автомобилей в условиях активного и беспрецедентного роста и насыщения конструкций сложными электрокомпонентами и необходимостью создания таких инструментов управления, которые будут системно учитывать взаимное влияние внешней среды эксплуатации и автомобилей, а также действовать и взаимодополнять друг друга на всех основных этапах жизненного цикла продукции.

Полученные в ходе диссертационного исследования результаты можно классифицировать как новые, определяющие развитие теории и практики

управления конкурентоспособностью и качеством в современных машиностроительных производствах.

Основные результаты диссертации представлены в 83 научных трудах, из них: 1 монографии; 18 статей, опубликованных в рецензируемых периодических изданиях, рекомендованных ВАК; 16 статей в научных изданиях, индексируемых базами WoS / Scopus.

Рекомендации по использованию результатов и выводов диссертационной работы

Представленные в диссертации основные результаты работы являются важными и направленными на научно-практическое развитие, как на отраслевом, так и межотраслевом уровнях. Полученные в рамках разработки методологии управления качеством автомобилей на этапах жизненного цикла по параметрам электромагнитной совместимости, обладают универсальностью и могут быть эффективно применены на различных предприятиях машиностроения (автомобилестроения).

Предложенные научно-технические решения рекомендуется к внедрению на предприятиях: АО «АВТОВАЗ», Предприятий Промышленной Группы ГАЗ, УАЗ, и т.д., в том числе на предприятиях-поставщиках автокомпонентов. Также, предложенные решения могут быть полезны научно-исследовательским институтам, а также корпоративным и независимым инжиниринговым центрам, занимающимся проблемами развития автомобильного производства и создания перспективных видов автомобильной техники.

Замечания к диссертационной работе.

1. Первая глава диссертации посвящена вопросам актуализации проблемы качества современных автомобилей по параметрам электромагнитной совместимости. Автор совершенно справедливо обратился к отраслевому стандарту IATF 16949 «Системы менеджмента качества. Особые требования по

применению ISO 9001:2015 для автомобильных производств и организаций, производящих соответствующие сервисные части», к опыту создания и использования инженерных инструментов управления качеством автомобилей на этапах жизненного цикла. При этом центральная роль отводится инструментам APQP, PPAP, FMEA и т.д. Далее автор рассматривает проблему электромагнитной совместимости современных автомобилей через призму как раз этих инженерных инструментов. Означает ли этот аспект то, что существующий набор инженерных инструментов обладает самодостаточностью и как бы покрывает все существующие и перспективные проблемные области управления качеством в современном автомобильном производстве?

- 2. Не в полной мере понятен вопрос развития предлагаемой методологии управления качеством автомобилей на этапах жизненного цикла по параметрам электромагнитной совместимости с позиции развития цифрового инструментария управления.
- 3. Требует дополнительного обоснования инструментарий организации работы по испытанию автомобилей на специализированном стенде с выделением критерия азимутального расположения автомобиля к источнику электромагнитных помех. Проводился ли расчет трудоемкости и затрат при проведении испытаний при различных углах позиционирования?
- 4. Важным аспектом при формировании электронной базы состояний отражающих функциональное качество автомобиля при различных вариациях воздействия является возможный объем наполнения, выделения вариаций для формализации и программирования стандартных кодов, способности создать такой комплекс, управления который сможет эффективно оперировать данными, и это все с учетом качества продукции массового производства. В этом контексте, какие обобщения и ограничения предусматриваются в предполагаемой системе с интегрированным модулем электромагнитной совместимости?

5. Изложенный в работе процесс организации технического обслуживания и ремонта автомобилей для обеспечения эксплуатационного качества, по параметрам электромагнитной совместимости, создает предпосылки существенного повышения роли дилерской сети автопроизводителя при проблем решении комплексных направленных на повышение конкурентоспособности продукции на рынке. В какой части требуется усиление автопроизводителя, для того чтобы обеспечить деятельности фундамент развития как производственной базы так и компетенций в решении задач по качественному и своевременному обслуживанию автомобилей с точки зрения помехоустойчивости?

Отмеченные вопросы и замечания ни в коей мере не снижают высокой значимости полученных в диссертационном исследовании результатов и не влияют на общую положительную оценку работы Подгорнего Александра Сергеевича, являющейся законченной научно-квалификационной работой.

Заключение

В представленной к защите диссертационной работе представлено решение значимой отраслевой научно-технической проблемы, через создание и решений реализацию комплекса направленных на повышение конкурентоспособности И современных автомобилей, качества автомобилей комбинированной электромобилей, C энергоустановкой, беспилотных автомобильных комплексов по параметрам электромагнитной совместимости. Получен комплекс инструментов охватывающих уровень системного управления конкурентоспособностью и качеством автомобилей в существенного возрастания значимости роли И электротехнологий на транспорте, который вошел в устойчивую отраслевую практику применения. Диссертационная работа «Разработка методологии управления качеством автомобилей на этапах жизненного цикла по параметрам электромагнитной совместимости» удовлетворяет всем требованиям п. 9 «Положения о присуждении ученых степеней», а ее автор — Подгорний Александр Сергеевич, заслуживает присуждения ученой степени доктора технических наук по специальности 2.5.22. - Управление качеством. Стандартизация. Организация производства.

Диссертационная работа и автореферат Подгорнего Александра Сергеевича, а также отзыв на нее рассмотрены и одобрены на заседании кафедры автоматизации и управления федерального государственного бюджетного образовательного учреждения высшего образования «Иркутский национальный исследовательский технический университет», г. Иркутск. Результаты голосования: за − 19 человек, против − нет, воздержались − нет. Протокол заседания кафедры № 3 от 30 сентября 2025 г.

Отзыв составлен:

Заведующий кафедрой, доктор технических наук, профессор Елшин Виктор Владимирович Докторская диссертация защищена по специальности 05.16.03 — Металлургия цветных и редких металлов

Профессор, доктор технических наук, профессор Лонцих Павел Абрамович Докторская диссертация защищена по специальности 05.03.01 – Технологии и оборудование механической и физико-технической обработки

Профессор, доктор экономических наук, профессор Рогов Виктор Юрьевич Докторская диссертация защищена по специальности 08.00.05 – Управление народным хозяйством. Теория управления экономическими системами

Секретарь кафедры «Автоматизация и управление» Кандидатская диссертация защищена по специальности 01.04.05- Оптика Кандидат физико-математических

наук, доцент Яром Татарникова Людмила Ильинична
Подпись Смима ВВ Ломуна И

ЗАВЕРЯЮ Рогова ВЮ, Тоя орминавай I

Общий отдел ФГБОУ ВО «ИРНИТУ»

НВ Сметреве замие дев