2020 Candidate degree in physical and mathematical science
Education
2022 Повышение квалификации: Самарский университет, Инклюзивное профессиональное образование
2022 Повышение квалификации: Самарский университет, Навыки оказания первой помощи
2021 Повышение квалификации: Самарский университет, Электронная информационно-образовательная среда университета
2018 Повышение квалификации: Самарский университет, Электронная информационно-образовательная среда университета
2018 Повышение квалификации: Самарский университет, "Навыки оказания первой помощи"
2018 Повышение квалификации: Самарский университет, "Инклюзивное профессиональное образование"
2017 Повышение квалификации: Институт Физико-математических наук и информационной технологий БФУ им. И.Канта г.Калининград
2017 Повышение квалификации: Самарский университет
2017 Повышение квалификации: Самарский университет
2016 Повышение квалификации: Университет ИТМО г.Санкт-Петербург
2016 Повышение квалификации: СГАУ
2013 - 2015 Высшее образование - специалитет, магистратура: Самарский государственный аэрокосмический университет имени академика С.П.Королева, факультет Информатика
2009 - 2013 Высшее образование - бакалавриат: Самарский государственный аэрокосмический университет имени академика С.П.Королева, факультет Информатика
2022 Повышение квалификации: Самарский университет, Инклюзивное профессиональное образование
2023
1Evdokimova V.V., Podlipnov V.V., Ivliev N.A. etc. Hybrid Refractive-Diffractive Lens with Reduced Chromatic and Geometric Aberrations and Learned Image Reconstruction // Sensors (Basel, Switzerland) 2023. — Vol. 23. Issue 1. № 1.
2022
1Doskolovich L.L., Skidanov R.V., Blank V.A. etc. Design of Multi-Wavelength Diffractive Lenses Focusing Radiation of Different Wavelengths to Different Points // PHOTONICS 2022. — Vol. 9. Issue 10. № 10.
2Karpeev S.V., Podlipnov V.V., Khonina S.N. etc. Free-Space Transmission and Detection of Variously Polarized Near-IR Beams Using Standard Communication Systems with Embedded Singular Phase Structures // Sensors (Switzerland) 2022. — Vol. 22. Issue 3.
3Skidanov R.V., Ganchevskaya S. V. , Vasilev V. S. etc. Systems of generalized harmonic lenses for image formation // Journal of Optical Technology 2022. — Vol. 89. Issue 3. — P. 132-136
2021
1Vinogradova I., Gizatulin A., Meshkov I. etc. Influence of two-frequency radiation intensity fluctuations on the output signal of a vortex optical fiber forming oam address in polyharmonic sensor technology // PHOTONICS 2021. — Vol. 8. Issue 9.
2Doskolovich L.L., Mingazov A.A., Byzov E.V. etc. Hybrid design of diffractive optical elements for optical beam shaping // Optics Express 2021. — Vol. 29. Issue 20. — P. 31875-31890
3Ganchevskaya S. V. Superposition of vortex light beams for atmospheric communication, formed by azimuthal diffractive optical elements // Proceedings of SPIE - The International Society for Optical Engineering. — 2021. — Vol. 11793.
4Skidanov R.V., Ganchevskaya S.V., Vasilev V.S. etc. Experimental Study of Image-Forming Lens Based on Diffractive Lenses, Correcting Aberrations // Optics and Spectroscopy 2021. —
2020
1Skidanov R.V., Doskolovich L.L., Vasilev V. S. etc. Spectral Diffraction Lenses for Forming a Light Source Emitting Several Specified Wavelengths // Optoelectronics, Instrumentation and Data Processing 2020. — Vol. 56. Issue 2. — P. 163-169
2Khonina S.N., Podlipnov V.V., Karpeev S.V. etc. Spectral control of the orbital angular momentum of a laser beam based on 3D properties of spiral phase plates fabricated for an infrared wavelength // Optics Express 2020. — Vol. 28. Issue 12. — P. 18407-18417
3Skidanov R.V., Doskolovich L.L., Ganchevskaya S. V. etc. Experiment with a diffractive lens with a fixed focus position at several given wavelengths // Computer Optics 2020. — Vol. 44. Issue 1. — P. 22-28
4Skidanov R.V., Ganchevskaya S. V. , Vasilev V. S. etc. Limiting the number of quantisation levels of a harmonic lens as a method for improving the quality of the generated image // Quantum Electronics 2020. — Vol. 50. Issue 7. — P. 675-678
5Skidanov R., Strelkov Y., Volotovskiy S. G. etc. Compact imaging systems based on annular harmonic lenses // Sensors (Switzerland) 2020. — Vol. 20. Issue 14. — P. 1-15
6Doskolovich L.L., Skidanov R.V., Bezus E.A. etc. Design of diffractive lenses operating at several wavelengths // Optics Express 2020. — Vol. 28. Issue 8. — P. 11705-11720
2019
1Ganchevskaya S. V. , Skidanov R., Vasilev V. S. Bessel beams formation by hybrid axicons // Journal of Physics: Conference Series. — 2019. — Vol. 1368. Issue 2.
2Vasilev V.S., Skidanov R.V., Ganchevskaya S.V. Изображающие системы на основе обобщённых линз // Computer Optics 2019. — Vol. 43. № 5. — P. 789-795
3Vasilev V.S., Kapustin A.I., Skidanov R.V. etc. Распространение пучков Бесселя и суперпозиций вихревых пучков в атмосфере // Computer Optics 2019. — Vol. 43. № 3. — P. 376-384
4Vasilev V. S. , Skidanov R.V., Ganchevskaya S. V. Imaging systems based on generalized lenses // Computer Optics 2019. — Vol. 43. Issue 5. — P. 789-795
5Ganchevskaya S. V. , Skidanov R.V.Addition of Topological Charges in Hypergeometric Beams // Bulletin of the Lebedev Physics Institute 2019. — Vol. 46. Issue 4. — P. 111-114
6Vasilev V. S. , Kapustin A.I., Skidanov R.V. etc. Experimental investigation of the stability of bessel beams in the atmosphere // Computer Optics 2019. — Vol. 43. Issue 3. — P. 376-384
2018
1Ganchevskaya S. V. , Skidanov R.V., Titaev O.A. Modified method of direct laser writing radially symmetric structures // Journal of Physics: Conference Series. — 2018. — Vol. 1096. Issue 1.
2Skidanov R.V., Moiseev O.Y., Ganchevskaya S. V. Microturbines Formed with the Aid of Direct Laser Recording on Photoresist // Technical Physics 2018. — Vol. 63. Issue 6. — P. 862-865
2017
1Skidanov R.V., Ganchevskaya S. V. Vortex lenses for optical micromanipulation // Proceedings of SPIE - The International Society for Optical Engineering. — 2017. — Vol. 10337.
2Ganchevskaya S. V. , Skidanov R.V.Vortex axicons for hypergeometric beams formation // Procedia Engineering. — 2017. — Vol. 201. — P. 135-140
2016
1Skidanov R.V., Moiseev O.Yu., Ganchevskaya S. V. Additive process for fabrication of phased optical diffraction elements // Journal of Optical Technology 2016. — Vol. 83. Issue 1. — P. 23-25
2Ganchevskaya S. V. , Skidanov R.V.The microturbine rotation by not circular light beam formed by vortex Axicon // CEUR Workshop Proceedings. — 2016. — Vol. 1638. — P. 24-31
3Ganchevskaya S. V. , Skidanov R.V.A technique for optimizing the structure of an optical trap to rotate multiple microobjects // Optical Memory and Neural Networks (Information Optics) 2016. — Vol. 25. Issue 3. — P. 160-167
2015
1Skidanov R.V., Ganchevskaya S. V. Diffractive vortex lenses for forming vortex light beams // Computer Optics 2015. — Vol. 39. Issue 5. — P. 674-677
2Skidanov R.V., Ganchevskaya S. V. An Algorithm for Designing a DOE to form Optical Traps of a Preset Configuration // Computer Optics 2015. — Vol. 39. Issue 2. — P. 181-186
3Ganchevskaya S. V. , Skidanov R.V.Diffractive optical elements for capturing and controlled rotation of micro-objects // CEUR Workshop Proceedings. — 2015. — Vol. 1490. — P. 53-60
2014
1Skidanov R.V., Porfirev A. P. , Ganchevskaya S. V. Manipulation of micro-objects using linear traps generated by vortex axicons // Computer Optics 2014. — Vol. 38. Issue 4. — P. 717-721
2Skidanov R.V., Ganchevskaya S. V. Diffractive optical elements for the formation of combinations of vortex beams in the problem manipulation of microobjects // Computer Optics 2014. — Vol. 38. Issue 1. — P. 65-71
3Porfirev A. P. , Morozov A.A., Rykov M.A. etc. Various superpositions of Bessel beams for capture and controlled rotation of microobjects // Proceedings of SPIE - The International Society for Optical Engineering. — 2014. — Vol. 9164.
4Skidanov R.V., Ganchevskaya S. V. Formation of Bessel beams by vortex axicons // Computer Optics 2014. — Vol. 38. Issue 3. — P. 463-468
Мы используем файлы cookies для улучшения работы сайта университета и большего удобства его использования.
Более подробную информацию об использовании файлов cookies можно найти здесь,
наше положение об обработке и защите персональных данных – здесь.
Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом университета и
ознакомлены с нашим положением об обработке и защите персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.