2023 Doctoral degree in physical and mathematical science
2012 Candidate degree in physical and mathematical science
Education
2022 Повышение квалификации: Самарский университет, Инклюзивное профессиональное образование
2022 Повышение квалификации: Самарский университет, Навыки оказания первой помощи
2021 Повышение квалификации: Самарский университет, по программе: «Электронная информационно-образовательная среда университета»
2018 Повышение квалификации: Самарский университет, Электронная информационно-образовательная среда университета
2018 Повышение квалификации: Самарский университет, "Навыки оказания первой помощи"
2018 Повышение квалификации: Самарский университет, "Инклюзивное профессиональное образование"
2014 Повышение квалификации: СГАУ
2013 Повышение квалификации: СГАУ
2012 Повышение квалификации: МГТУ им.Н.Э.Баумана
2007 - 2009 Высшее: Самарский государственный аэрокосмический университет имени академика С.П.Королева, факультет Информатика
2003 - 2007 Высшее: Самарский государственный аэрокосмический университет имени академика С.П.Королева
2024
1Stafeev S.S., Zaitcev V.D., Kotlyar V.V.Sharp focusing of a hybridly polarized optical vortex // Computer Optics 2024. — Vol. 48. Issue 5. № 5. — P. 655-661
2Stafeev S.S., Kotlyar V.V.Spin-orbital Conversion in Tightly Focused Optical Vortices with Vector Polarization // 2024 Photonics and Electromagnetics Research Symposium, PIERS 2024 - Proceedings. — 2024. —
3Kotlyar V.V., Stafeev S.S., Telegin A.M. etc. Spin Angular Momentum at the Focus of a Superposition of an Optical Vortex and a Plane Wave with Linear Polarizations // PHOTONICS 2024. — Vol. 11. Issue 4. № 4.
4Kotlyar V.V., Stafeev S.S., Kovalev A.A. etc. Focusing a cylindrical vector beam and the Hall effect // Computer Optics 2024. — Vol. 48. Issue 1. № 1. — P. 47-52
5Stafeev S.S., Kazakov N.N., Kotlyar V.V.Beams with the transverse-only intensity at the focus // Computer Optics 2024. — Vol. 48. Issue 2. № 2. — P. 186-191
7Wang B., Zhang X., Shah S.A.A. etc. Top three intelligent algorithms for OAM mode recognitions in optical communications // Engineering Research Express 2024. — Vol. 6. Issue 3. № 3.
8Kotlyar V.V., Kovalev A.A., Stafeev S.S. etc. Optical spin and orbital Hall effects at the tight focus of the superposition of two coaxial cylindrical vector beams with different-parity numbers // Journal of the Optical Society of America A: Optics and Image Science, and Vision 2024. — Vol. 41. Issue 8. № 8. — P. 1563-1572
9Kotlyar V.V., Kovalev A.A., Nalimov A.G. etc. Transverse and Longitudinal Energy Flows in a Sharp Focus of Vortex and Cylindrical Vector Beams // Applied Sciences (Switzerland) 2024. — Vol. 14. Issue 14. № 14.
10Kotlyar V.V., Kovalev A.A., Telegin A.M. etc. Transverse Spin Hall Effect and Twisted Polarization Ribbons at the Sharp Focus // Applied Sciences (Switzerland) 2024. — Vol. 14. Issue 9. № 9.
11Zaitsev V.D., Stafeev S.S., Kotlyar V.V.Tight Focusing of Optical Vortices with Hybrid Polarization // 2024 Photonics and Electromagnetics Research Symposium, PIERS 2024 - Proceedings. — 2024. —
13Stafeev S.S., Kotlyar V.V.Tight Focusing of Vector Beams without Longitudinal Component of the Electric Field // 2024 Photonics and Electromagnetics Research Symposium, PIERS 2024 - Proceedings. — 2024. —
14Zaitsev V.D., Stafeev S.S., Kotlyar V.V.Poincare Beams in Sharp Focus // 2024 Photonics and Electromagnetics Research Symposium, PIERS 2024 - Proceedings. — 2024. —
15Stafeev S.S., Nalimov A.G., Kozlova E.S. etc. Zone Plate Based Method for Measurement of Shift or Thickness // 2024 Photonics and Electromagnetics Research Symposium, PIERS 2024 - Proceedings. — 2024. —
16Kotlyar V.V., Kovalev A.A., Stafeev S.S. etc. Spin-orbital conversion of the light field immediately behind an ideal spherical lens // Computer Optics 2024. — Vol. 48. Issue 3. № 3. — P. 325-333
17Zaitsev V.D., Stafeev S.S., Kotlyar V.V.Optical Hall Effect at the Tight Focus of Hybrid Vector Beams // 2024 Photonics and Electromagnetics Research Symposium, PIERS 2024 - Proceedings. — 2024. —
18Kotlyar V.V., Kovalev A.A., Stafeev S.S. etc. Spin-orbit Conversion of Vector Light Field Just after Spherical Lens // 2024 Photonics and Electromagnetics Research Symposium, PIERS 2024 - Proceedings. — 2024. —
2Stafeev S.S., Kotlyar V.V.Photonic nanojets produced by microcubes // International Conference on Transparent Optical Networks. — 2015. — Vol. 2015-August.
4Stafeev S.S., Nalimov A.G., Kotlyar M. V. etc. A four-zone reflective azimuthal micropolarizer // Computer Optics 2015. — Vol. 39. Issue 5. — P. 709-715
5Stafeev S.S., O'Faolain L., Kotlyar V.V. etc. Tight focus of light using micropolarizer and microlens // Applied Optics 2015. — Vol. 54. Issue 14. — P. 4388-4394
2009
1Kotlyar V.V., Stafeev S.S.Modeling sharp focus radially-polarized laser mode with conical and binary microaxicons // Computer Optics 2009. — Vol. 33. Issue 1. — P. 52-60
2Kotlyar V.V., Stafeev S.S.Sharply focusing a radially polarized laser beam using a gradient Mikaelian's microlens // Optics Communications 2009. — Vol. 282. Issue 4. — P. 459-464
2010
1KOTLYaR V.V., KOVALEV A.A., STAFEEV S.S.Дифракция гауссового пучка на логарифмическом аксиконе: преодоление дифракционного предела // Computer Optics 2010. — № т. 34, № 4.. — P. 436-443
2Kotlyar V.V., Stafeev S.S.Modelling the sharp focus of a radially polarized light using a microaxicon // International Conference «Optical Techniques and Nano-Tools for Material and Life Sciences» (OTN4MLS-2010).. — 2010. — P. 15-19
3KOTLYaR V.V., NALIMOV A.G., STAFEEV S.S. etc. Диаметр светового пятна в ближней зоне бинарного дифракционного микроаксикона // Computer Optics 2010. — № Т 34 №1. — P. 24-34
4Kotlyar V.V., Kovalev A.A., Stafeev S.S.Diffraction of the gaussian beam by the logarithmical axicon: Overcoming the diffraction limit // Computer Optics 2010. — Vol. 34. Issue 4. — P. 436-442
5Kotlyar V.V., Stafeev S.S., Skidanov R.V. etc. Light spot diameter in the near zone of binary diffractive microaxicon // Computer Optics 2010. — Vol. 34. Issue 1. — P. 24-34
6Kotlyar V.V., Stafeev S.S.Modeling the sharp focus of a radially polarized laser mode using a conical and a binary microaxicon // Journal of the Optical Society of America B: Optical Physics 2010. — Vol. 27. Issue 10. — P. 1991-1997
2011
1KOTLYaR V.V., NALIMOV A.G., STAFEEV S.S.Диаметр фокусного пятна для негауссовых пучков с конечной энергией // Computer Optics 2011. — № т. 35, № 4.. — P. 452-459
2KOTLYaR V.V., STAFEEV S.S., MOROZOV A.A. etc. Субволновая фокусировка с помощью бинарного микроаксикона с периодом 800 нм // Computer Optics 2011. — № Том 35, № 1. — P. 4-10
3STAFEEV S.S., O’Faoleyn L., Shanina M.I. etc. Субволновая фокусировка с помощью зонной пластинки Френеля с фокусным расстоянием 532 нм // Computer Optics 2011. — № т. 35, № 4,. — P. 460-461
4KOTLYaR V.V., STAFEEV S.S., MOROZOV A.A. etc. Субволновая фокусировка c помощью бинарного микроаксикона с периодом 800 нм // Computer Optics 2011. — № том 35, №1. — P. 4-10
5Kotlyar V.V., Kovalev A.A., Stafeev S.S. etc. Diffraction of a Gaussian beam by a logarithmic axicon // Journal of the Optical Society of America A: Optics and Image Science, and Vision 2011. — Vol. 28. Issue 5. — P. 844-849
6STAFEEV S.S., KOTLYaR V.V.Сравнительное моделирование двумя методами острой фокусировки зонной пластинкой // Computer Optics 2011. — № том 35, №3. — P. 305-310
7Stafeev S.S., Kotlyar V.V.Comparative modeling two methods of sharp focusing with zone plate using // Computer Optics 2011. — Vol. 35. Issue 3. — P. 305-310
8Kotlyar V.V., Nalimov A.G., Stafeev S.S.Diameter of a focal spot for non-Gaussian beams with a finite energy // Computer Optics 2011. — Vol. 35. Issue 4. — P. 452-459
9Stafeev S.S., O’Faolain L., Shanina M.I. etc. Subwavelength focusing using fresnel zone plate with focal length of 532nm // Computer Optics 2011. — Vol. 35. Issue 4. — P. 460-461
10Kotlyar V.V., Stafeev S.S., O'Faolain L. etc. Tight focusing with a binary microaxicon // Optics Letters 2011. — Vol. 36. Issue 16. — P. 3100-3102
11Kotlyar V.V., Stafeev S.S., Shanina M.I. etc. Subwavelength focusing using a binary microaxicon with period 800 NM // Computer Optics 2011. — Vol. 35. Issue 1. — P. 4-10
2012
1KOVALEV A.A., KOTLYaR V.V., STAFEEV S.S. etc. Дифракция света на спиральной фазовой пластинке с кусочно-непрерывным микрорельефом // Computer Optics 2012. — № 36(2).
3Kotlyar V.V., Stafeev S.S., Kovalev A.A. etc. Focusing of linearly polarized light using binary axicon with subwavelength period // Computer Optics 2012. — Vol. 36. Issue 2. — P. 183-189
5STAFEEV S.S., KOZLOVA E.S., MOROZOV A.A. etc. Фокусировка непрерывного и импульсного лазерного излучения с помощью микросферы // Computer Optics 2012. — № 36(4). — P. 489-496
6STAFEEV S.S., KOTLYaR V.V.Elongated Photonic Nanojet from Truncated Cylindrical Zone Plate // Journal of Atomic, Molecular, and Optical Physics 2012. — № Article ID 123872.
9Kotlyar V.V., Kovalev A.A., Stafeev S.S.Intensity and power flow symmetry of subwavelength focal spot // Computer Optics 2012. — Vol. 36. Issue 2. — P. 190-198
10Stafeev S.S., Kozlova E.S., Kozlov D. A. etc. Focusing of continuous and pulsed laser beams by microsphere // Computer Optics 2012. — Vol. 36. Issue 4. — P. 489-496
11Kovalev A.A., Kotlyar V.V., Stafeev S.S. etc. Diffraction of light by a spiral phase plate with piecewisecontinuous microrelief // Computer Optics 2012. — Vol. 36. Issue 2. — P. 205-210
12STAFEEV S.S., KOTLYaR V.V., KOVALEV A.A.Симметрия интенсивности и потока мощности субволнового фокусного пятна // Computer Optics 2012. — № 36(2). — P. 190-198
13KOTLYaR V.V., STAFEEV S.S., NALIMOV A.G. etc. Моделирование фокусировки линейно-поляризованного света с помощью субволнового бинарного аксикона // Computer Optics 2012. — № 36(2). — P. 183-189
2013
1Stafeev S.S., Kotlyar V.V., O'Faolain L. Subwavelength focusing of laser light by microoptics // Journal of Modern Optics 2013. — Vol. 60. Issue 13. — P. 1050-1059
2Kotlyar M.I., Stafeev S.S.Subwavelength elliptical focal spot generated by a binary zone plate // Proceedings of the International Conference on Advanced Optoelectronics and Lasers, CAOL. — 2013. — P. 234-236
3Kotlyar V.V., Stafeev S.S., Liu Y. etc. Analysis of the shape of a subwavelength focal spot for the linearly polarized light // Applied Optics 2013. — Vol. 52. Issue 3. — P. 330-339
4Kotlyar V.V., Kovalev A.A., Stafeev S.S. etc. An asymmetric optical vortex generated by a spiral refractive plate // Journal of Optics 2013. — Vol. 15. Issue 2.
6Stafeev S.S., Kotlyar V.V.Special aspects of subwavelength focal spot measurement using near-field optical microscope // Computer Optics 2013. — Vol. 37. Issue 3. — P. 332-340
2014
1Nalimov A.G., Stafeev S.S., O'Faolain L. etc. Four-zone reflective polarization conversion plate // Progress in Biomedical Optics and Imaging - Proceedings of SPIE. — 2014. — Vol. 9448.
2Stafeev S.S., O’Faolain L., Shanina M.I. etc. Sharp focusing of a mixture of radially and linearly polarized beams using a binary microlens // Computer Optics 2014. — Vol. 38. Issue 4. — P. 606-613
3Nalimov A.G., O'Faolain L., Stafeev S.S. etc. Reflected four-zones subwavelength microoptics element for polarization conversion from linear to radial // Computer Optics 2014. — Vol. 38. Issue 2. — P. 229-236
4Stafeev S., Kotlyar V., Kovalev A.Near-field diffraction of laser light by dielectric corner step // Progress in Biomedical Optics and Imaging - Proceedings of SPIE. — 2014. — Vol. 9031.
5Kotlyar V.V., Stafeev S.S., Feldman A.Y. Photonic nanojets formed by square microsteps // Computer Optics 2014. — Vol. 38. Issue 1. — P. 72-80
6Stafeev S.S., Kotlyar V.V.Polarizing and focusing properties of reflective Fresnel zone plate // Computer Optics 2014. — Vol. 38. Issue 3. — P. 456-462
7Berenfeld B., Krupa T., Lebedev A. etc. When everyone is a probe, everyone is a learner // Proceedings of the 10th International Conference on Mobile Learning 2014, ML 2014. — 2014. — P. 308-312
8Stafeev S.S., Kotlyar V.V.Measurement of photonic nanojet generated by square-profile microstep // Progress in Biomedical Optics and Imaging - Proceedings of SPIE. — 2014. — Vol. 9448.
9Kotlyar V.V., Stafeev S.S., Feldman A. Photonic nanojets generated using square-profile microsteps // Applied Optics 2014. — Vol. 53. Issue 24. — P. 5322-5329
2016
1Vasiliev V., Kozlov F., Mouromtsev D. etc. ECOLE: An ontology-based open online course platform // Lecture Notes in Computer Science. — 2016. — Vol. 9500. — P. 41-66
2Stafeev S.S., Kotlyar M. V. , O’Faolain L. etc. A four-zone transmission azimuthal micropolarizer with phase shift // Computer Optics 2016. — Vol. 40. Issue 1. — P. 12-18
3Stafeev S.S., Kotlyar V.V., Porfirev A.P.Behavior of asymmetric Bessel beam in focal plane of high numerical aperture objective // Progress in Biomedical Optics and Imaging - Proceedings of SPIE. — 2016. — Vol. 9917.
4Stafeev S.S., Nalimov A.G., Kotlyar M. V. etc. Microlens-aided focusing of linearly and azimuthally polarized laser light // Optics Express 2016. — Vol. 24. Issue 26. — P. 29800-29813
5Kotlyar V.V., Stafeev S.S., Kotlyar M. V. etc. Subwavelength micropolarizer in a gold film for visible light // Applied Optics 2016. — Vol. 55. Issue 19. — P. 5025-5032
6Stafeev S.S., Nalimov A.G., O'Faolain L. etc. The tight focusing of laser radiation using 4-sector polarization converter // Journal of Physics: Conference Series. — 2016. — Vol. 735. Issue 1.
7Stafeev S.S., Kotlyar M. V. , O'Faolain L. etc. Subwavelength gratings for generating azimuthally polarized beams // CEUR Workshop Proceedings. — 2016. — Vol. 1638. — P. 125-131
8Stafeev S.S., Nalimov A.G., Kotlyar M. V. etc. Subwavelength focusing of laser light of a mixture of linearly and azimuthally polarized beams // Computer Optics 2016. — Vol. 40. Issue 4. — P. 458-466
2023
1Kotlyar V.V., Kovalev A.A., Stafeev S.S. etc. Vector Light Field Immediately behind an Ideal Spherical Lens: Spin–Orbital Conversion, Additional Optical Vortices, Spin Hall Effect, Magnetization // PHOTONICS 2023. — Vol. 10. Issue 11. № 11.
2Nalimov A., Stafeev S., Kotlyar V. etc. Optical Sensor Methodology for Measuring Shift, Thickness, Refractive Index and Tilt Angle of Thin Films // PHOTONICS 2023. — Vol. 10. Issue 6. № 6.
3Zaitsev V.D., Stafeev S.S., Kotlyar V.V.Axial superposition at a sharp focal spot of a linearly polarized beam and a cylindrical vector beam // Proceedings of SPIE - The International Society for Optical Engineering. — 2023. — Vol. 12743.
4Kotlyar V.V., Stafeev S.S., Kozlova E.S.High-order optical Hall effect at the tight focus of laser radiation // Computer Optics 2023. — Vol. 47. Issue 5. № 5. — P. 710-715
5Stafeev S.S., Kazakov N.N., Zaitsev V.D. etc. Vector Beams with Only Transverse Intensity at Focus // Applied Sciences (Switzerland) 2023. — Vol. 13. Issue 22. № 22.
6Kotlyar V.V., Stafeev S.S., Telegin A.M.Spin angular momentum at the sharp focus of a cylindrical vector vortex beam // Computer Optics 2023. — Vol. 47. Issue 6. № 6. — P. 875-883
7Kotlyar V.V., Stafeev S.S., Zaitsev V.D.Sharp focusing of on-axis superposition of a high-order cylindrical vector beam and a beam with linear polarization // Computer Optics 2023. — Vol. 47. Issue 1. № 1. — P. 5-15
8Kozlova E., Stafeev S., Kotlyar V.Investigation of the sensitivity of an aluminum aperture cantilever to the polarization of incident radiation // 2023 IX International Conference on Information Technology and Nanotechnology (ITNT). — 2023. —
10Kotlyar V., Stafeev S., Kovalev A. etc. The spin Hall effect near the tight focus of a vectorial Gaussian beam with higher-order cylindrical polarization // 2023 IX International Conference on Information Technology and Nanotechnology (ITNT). — 2023. —
11Kotlyar V., Stafeev S., Kozlova E.The high-order Hall effects at the tight focus of the hybrid vector beams // 2023 IX International Conference on Information Technology and Nanotechnology (ITNT). — 2023. —
16Kotlyar V.V., Stafeev S.S., Kovalev A.A. etc. Hall Effect near a Sharp Focus of Cylindrical Vector Beams with Negative Order // Optical Memory and Neural Networks (Information Optics) 2023. — Vol. 32. — P. S120-S129
17Stafeev S.S., Pryamikov A.D., Alagashev G.K. etc. Reverse energy flow in vector modes of optical fibers // Computer Optics 2023. — Vol. 47. Issue 1. № 1. — P. 36-39
18Kotlyar V.V., Stafeev S.S., Zaycev Vladislav DmitrievichОстрая фокусировка осевой суперпозиции цилиндрического векторного пучка высокого порядка и пучка с линейной поляризацией // Computer Optics 2023. — Vol. 47. № 1. — P. 5-15
19Kotlyar V.V., Stafeev S.S., Telegin A.M. etc. The Mechanism of the Formation of the Spin Hall Effect in a Sharp Focus // PHOTONICS 2023. — Vol. 10. Issue 10. № 10.
21Kotlyar V.V., Stafeev S.S., Zaitsev V.D. etc. Poincare Beams in Tight Focus // Optical Memory and Neural Networks (Information Optics) 2023. — Vol. 32. — P. S109-S119
22Zaitsev V.D., Stafeev S.S., Kotlyar V.V.Formation of Photonic Nanojets by Two-Dimensional Microprisms // Optics and Spectroscopy 2023. — Vol. 131. Issue 11. № 11. — P. 1130-1136
23Kotlyar V.V., Stafeev S.S., Zaitsev V.D. etc. Spin–Orbital Transformation in a Tight Focus of an Optical Vortex with Circular Polarization // Applied Sciences (Switzerland) 2023. — Vol. 13. Issue 14. № 14.
24Stafeev S., Pryamikov A., Alagashev G. etc. Cylindrical Vector Beam of the Second Order in a Microstructured Waveguide // Optical Memory and Neural Networks (Information Optics) 2023. — Vol. 32. — P. S130-S137
25Kotlyar V.V., Stafeev S.S., Telegin A.M.Spin angular momentum at the tight focus of a cylindrical vector beam with an imbedded optical vortex // OPTIK 2023. — Vol. 287.
26Zaitsev V.D., Stafeev S.S., Kotlyar V.V.Hall Effect for Beams with Circular Polariziation // Optical Memory and Neural Networks (Information Optics) 2023. — Vol. 32. — P. S180-S186
27Nalimov A., Kotlyar V., Stafeev S. etc. Metalens for Detection of a Topological Charge // Optical Memory and Neural Networks (Information Optics) 2023. — Vol. 32. — P. S187-S194
2017
1Stafeev S.S., Kotlyar V.V.Tight focusing of a sector-wise azimuthally polarized optical vortex // Computer Optics 2017. — Vol. 41. Issue 2. — P. 147-154
3Kozlova E.S., Kotlyar V.V., Nalimov A.G. etc. Dependence of the focal spot parameters on the relief height of the amplitude zone plate // International Conference on Transparent Optical Networks. — 2017. —
4Kotlyar V.V., Nalimov A.G., Stafeev S.S. etc. Thin metalens with high numerical aperture // Computer Optics 2017. — Vol. 41. Issue 1. — P. 5-12
5Nalimov A.G., Stafeev S.S., Kozlova E.S. etc. Subwavelength focusing of laser light using a chromium zone plate // Computer Optics 2017. — Vol. 41. Issue 3. — P. 356-362
6Stafeev S.S., Nalimov A.G., Kotlyar M. V. etc. Transmitting subwavelength azimuthal micropolarizer // Proceedings of SPIE - The International Society for Optical Engineering. — 2017. — Vol. 10337.
7Kozlova E.S., Kotlyar V.V., Nalimov A.G. etc. Subwavelength focusing of laser light using zone plates with silver and chromium rings // Progress in Electromagnetics Research Symposium. — 2017. — P. 107-111
8Kotlyar V.V., Nalimov A.G., Stafeev S.S. etc. A metalens for subwavelength focus of light // Progress in Electromagnetics Research Symposium. — 2017. — P. 112-117
9Kotlyar V.V., Stafeev S.S., Nalimov A.G. etc. Tight focusing of circularly polarized laser light by amplitude zone plate with chromium rings // Progress in Electromagnetics Research Symposium. — 2017. — Vol. 2017-November. — P. 2501-2505
10Stafeev S.S., Kotlyar V.V.Tight focusing of a quasi-cylindrical optical vortex // Optics Communications 2017. — Vol. 403. — P. 277-282
11Kotlyar V.V., Stafeev S.S., Nalimov A.G. etc. Tight focusing of laser light using a chromium Fresnel zone plate // Optics Express 2017. — Vol. 25. Issue 17. — P. 19662-19671
12Stafeev S.S., Nalimov A.G., O'Faolain L. etc. Azimuthal polarizer with phase shift for subwavelength focusing of laser light // Proceedings of SPIE - The International Society for Optical Engineering. — 2017. — Vol. 10176.
13Kotlyar V.V., Nalimov A.G., Stafeev S.S. etc. Thin high numerical aperture metalens // Optics Express 2017. — Vol. 25. Issue 7. — P. 8158-8167
14Stafeev S.S., Nalimov A.G., Kotlyar M. V. etc. Focusing zone plate based on subwavelength grating // International Conference on Transparent Optical Networks. — 2017. —
15Stafeev S.S., Nalimov A.G., O’Faolain L. etc. Binary diffraction gratings for controlling polarization and phase of laser light [review] // Computer Optics 2017. — Vol. 41. Issue 3. — P. 299-314
16Stafeev S.S., Nalimov A.G., O'Faolain L. etc. Tight focusing of laser light propagated through subwavelength micropolarizer using Fresnel zone plate // Proceedings of SPIE - The International Society for Optical Engineering. — 2017. — Vol. 10342.
17Stafeev S.S., Nalimov A.G., Kotlyar M. V. etc. Tight focusing of azimuthally polarized optical vortex produced by subwavelength grating // Procedia Engineering. — 2017. — Vol. 201. — P. 83-89
2Stafeev S.S., Nalimov A.G., Kotlyar V.V.Energy backflow in the focal spot of a cylindrical vector beam // Computer Optics 2018. — Vol. 42. Issue 5. — P. 744-750
3Stafeev S.S., O'Faolain L., Kotlyar M. V. Rotation of two-petal laser beams in the near field of a spiral microaxicon // Computer Optics 2018. — Vol. 42. Issue 3. — P. 385-391
4Stafeev S.S., Nalimov A.G., O'Faolain L. etc. Subwavelength focusing of azimuthally polarized optical vortex // Proceedings of SPIE - The International Society for Optical Engineering. — 2018. — Vol. 10774.
5Kotlyar V.V., Nalimov A.G., Stafeev S.S.The near-axis backflow of energy in a tightly focused optical vortex with circular polarization // Computer Optics 2018. — Vol. 42. Issue 3. — P. 392-400
6Stafeev S.S., Nalimov A.G.Longitudinal component of the poynting vector of a tightly focused optical vortex with circular polarization // Computer Optics 2018. — Vol. 42. Issue 2. — P. 190-196
7Stafeev S.S., Nalimov A.G., O'Faolain L. etc. Tight focusing of a nonhomogeneously polarized optical vortex // Progress in Biomedical Optics and Imaging - Proceedings of SPIE. — 2018. — Vol. 10717.
8Stafeev S.S., Nalimov A.G., O'faolain L. etc. Effects of fabrication errors on the focusing performance of a sector metalens // Computer Optics 2018. — Vol. 42. Issue 6. — P. 970-976
9Stafeev S.S., Nalimov A.G., Kotlyar M. V. etc. Subwavelength Gratings for Polarization Control // Journal of Physics: Conference Series. — 2018. — Vol. 1096. Issue 1.
10Stafeev S.S., Nalimov A.G., Kotlyar V.V.Energy Backflow in Tightly Focused Optical Vortex // International Conference on Transparent Optical Networks. — 2018. — Vol. 2018-July.
11Stafeev S.S., Nalimov A.G., Kotlyar V.V.Longitudinal component of the Poynting vector of tightly focused cylindrical vector beam // Journal of Physics: Conference Series. — 2018. — Vol. 1135. Issue 1.
12Stafeev S.S., Nalimov A.G., Kotlyar V.V.Negative longitudinal component of the Poynting vector of tightly focused optical vortex // Proceedings - International Conference Laser Optics 2018, ICLO 2018. — 2018. — P. 204
2019
1Zaitsev V.D., Stafeev S.S.Photonic jets for mid-IR focal plane arrays produced by the triangular dielectric prism // Proceedings of SPIE - The International Society for Optical Engineering. — 2019. — Vol. 11032.
2Stafeev S.S., Kotlyar V.V., Nalimov A.G.Energy backflow in in a tightly focused high-order cylindrical vector beam // Proceedings of SPIE - The International Society for Optical Engineering. — 2019. — Vol. 11025.
3Stafeev S.S., Nalimov A.G., O'Faolain L. etc. Sector Metalens for Sharp Focusing of Laser Light // Progress in Electromagnetics Research Symposium. — 2019. — Vol. 2019-June. — P. 4248-4251
4Kotlyar V.V., Nalimov A.G., Stafeev S.S.Backward Energy Flux in Sharp Focus of Beams with Linear and Circular Polarization // Progress in Electromagnetics Research Symposium. — 2019. — Vol. 2019-June. — P. 335-338
5Kozlova E.S., Kotlyar V.V., Stafeev S.S. etc. Fresnel Zone Plate in Thin Aluminum Film // Progress in Electromagnetics Research Symposium. — 2019. — Vol. 2019-June. — P. 4333-4338
6Kotlyar V.V., Stafeev S.S., Nalimov A.G. etc. Two-petal laser beam near a binary spiral axicon with topological charge 2 // Optics and laser technology 2019. — Vol. 119.
7Zaitsev V.D., Stafeev S.S.Photonic Jets Arrays Produced by Triangular Dielectric Prisms for Mid-IR Imaging // Progress in Electromagnetics Research Symposium. — 2019. — Vol. 2019-June. — P. 2610-2614
8Kotlyar V.V., Stafeev S.S., Nalimov A.G.Energy backflow in the focus of a light beam with phase or polarization singularity // Physical Review A 2019. — Vol. 99. Issue 3.
9Kotlyar V.V., Stafeev S.S., Kovalev A.A.Sharp focusing of a light field with polarization and phase singularities of an arbitrary order // Computer Optics 2019. — Vol. 43. Issue 3. — P. 337-346
10Stafeev S.S., Kotlyar V.V., Nalimov A.G. etc. Focusing of laser light by sectoral spiral metalens // Proceedings of SPIE - The International Society for Optical Engineering. — 2019. — Vol. 11025.
11Stafeev S.S., Kotlyar V.V.Formation of an elongated region of energy backflow using ring apertures // Computer Optics 2019. — Vol. 43. Issue 2. — P. 193-199
12Stafeev S.S., Nalimov A.G., Kotlyar V.V.Metalens for polarization conversion and focusing of laser light // Journal of Physics: Conference Series. — 2019. — Vol. 1368. Issue 2.
13Kotlyar V.V., Stafeev S.S., Nalimov A.G. etc. Formation of the reverse flow of energy in a sharp focus // Computer Optics 2019. — Vol. 43. Issue 5. — P. 714-722
14Kotlyar V.V., Nalimov A.G., Stafeev S.S.Comparison of backward flow values in the sharp focus of light fields with polarization and phase singularity // Computer Optics 2019. — Vol. 43. Issue 2. — P. 174-183
15Kotlyar V.V., Nalimov A.G., Stafeev S.S. etc. Single metalens for generating polarization and phase singularities leading to a reverse flow of energy // Journal of Optics 2019. — Vol. 21. Issue 5.
16Kotlyar V.V., Stafeev S.S., Kovalev A.A.Reverse and toroidal flux of light fields with both phase and polarization higher-order singularities in the sharp focus area // Optics Express 2019. — Vol. 27. Issue 12. — P. 16689-16702
17Stafeev S.S., Kotlyar V.V., Nalimov A.G. etc. The Non-Vortex Inverse Propagation of Energy in a Tightly Focused High-Order Cylindrical Vector Beam // IEEE PHOTONICS JOURNAL 2019. — Vol. 11. Issue 4.
18Kotlyar V.V., Stafeev S.S., Kovalev A.A.Toroidal and reverse flux of light in the sharp focus // Proceedings of the International Conference on Advanced Optoelectronics and Lasers, CAOL. — 2019. — Vol. 2019-September. — P. 379-381
19Stafeev S.S., Kotlyar V.V.Elongation of the area of energy backflow through the use of ring apertures // Optics Communications 2019. — Vol. 450. — P. 67-71
20Kotlyar V.V., Nalimov A.G., Stafeev S.S.Exploiting the circular polarization of light to obtain a spiral energy flow at the subwavelength focus // Journal of the Optical Society of America B: Optical Physics 2019. — Vol. 36. Issue 10. — P. 2850-2855
21Stafeev S.S., Nalimov A.G., Kotlyar V.V.Tight Focusing of a Second-order Cylindrical Vector Beam // Progress in Electromagnetics Research Symposium. — 2019. — Vol. 2019-June. — P. 3254-3257
22Kotlyar V.V., Stafeev S.S., Nalimov A.G. etc. Subwavelength grating-based spiral metalens for tight focusing of laser light // Applied Physics Letters 2019. — Vol. 114. Issue 14.
23Kotlyar V.V., Nalimov Anton Gennadevich, Stafeev S.S.Comparison of the negative energy flow in linearly and circularly polarized beams focused with metalens // The 10th International Conference on Metamaterials, Photonic Crystals and Plasmonics META-2019. — 2019. — P. 1687-1688
1Kotlyar V.V., Stafeev S.S., Nalimov A.G. etc. Experimental investigation of the energy backflow in the tight focal spot // Computer Optics 2020. — Vol. 44. Issue 6. — P. 863-870
3Bratchenko L., Abrosimova E. A. , Stafeev S. etc. Conventional Raman and surface-enhanced Raman spectroscopy for human skin components analysis // Proceedings of ITNT 2020 - 6th IEEE International Conference on Information Technology and Nanotechnology. — 2020. —
4Kotlyar V.V., Nalimov A.G., Stafeev S.S. etc. Orbital energy and spin flows in a strong focus of laser light // IEEE PHOTONICS JOURNAL 2020. — Vol. 12. Issue 5.
5Kotlyar V.V., Stafeev S.S., Nalimov A.G. etc. Mechanism of formation of an inverse energy flow in a sharp focus // Physical Review A 2020. — Vol. 101. Issue 3.
6Zaycev Vladislav Dmitrievich, Stafeev S.S.Формирование массива фотонных наноструй ступеньками с квадратным профилем // Самарский национальный исследовательский университет имени академика С.П. Королева. — 2020. — Vol. 1. — P. 299-303
7Stafeev S.S., Kozlova E.S., Nalimov A.G. etc. Poynting vector behavior of cylindrical vector beam focused by gradient index lens // International Conference on Transparent Optical Networks. — 2020. — Vol. 2020-July.
8Nalimov A.G., Stafeev S.S.Energy flux of a vortex field focused using a secant gradient lens // Computer Optics 2020. — Vol. 44. Issue 5. — P. 707-711
9Nalimov A., Kotlyar V., Stafeev S.Optimizing of Poynting vector and light intensity after secant gradient lens // Proceedings of ITNT 2020 - 6th IEEE International Conference on Information Technology and Nanotechnology. — 2020. —
10Zaitsev V.D., Stafeev S.S.Comparison of photonic nanojets produced by dielectric prism and cylinder // International Conference on Transparent Optical Networks. — 2020. — Vol. 2020-July.
11Stafeev S.S., Kozlova E.S., Nalimov A.G.Focusing a second-order cylindrical vector beam with a gradient index mikaelian lens // Computer Optics 2020. — Vol. 44. Issue 1. — P. 29-33
12Nalimov A.G., Stafeev S.S.Rotation of an elliptical dielectric particle in the focus of a circularly polarized gaussian beam // Computer Optics 2020. — Vol. 44. Issue 4. — P. 561-567
13Kotlyar V.V., Nalimov A.G., Kovalev A.A. etc. Transfer of spin angular momentum to a dielectric particle // Computer Optics 2020. — Vol. 44. Issue 3. — P. 333-342
14Kotlyar V.V., Stafeev S.S., Nalimov A.G.Vortex energy flow in the tight focus of a non-vortex field with circular polarization // Computer Optics 2020. — Vol. 44. Issue 1. — P. 5-11
15Stafeev S.S., Kozlova E.S., Nalimov A.G. etc. Tight focusing of a cylindrical vector beam by a hyperbolic secant gradient index lens // Optics Letters 2020. — Vol. 45. Issue 7. — P. 1687-1690
16Kotlyar V.V., Nalimov A.G., Kovalev A.A. etc. Spin-orbit and orbit-spin conversion in the sharp focus of laser light: Theory and experiment // Physical Review A 2020. — Vol. 102. Issue 3.
17Kozlova E.S., Stafeev S.S., Fomchenkov S.A. etc. Laser light focusing by aluminium zone plate // International Conference on Transparent Optical Networks. — 2020. — Vol. 2020-July.
18Nalimov A., Kotlyar V., Stafeev S.Torque on an ellipsoidal dielectric particle in a gaussian beam with circular polarization // International Conference on Transparent Optical Networks. — 2020. — Vol. 2020-July.
19Nalimov A.G., Stafeev S.S., Kotlyar V.V.Optical force acting on a particle in a reverse energy flow near the focus of a gradient lens // Journal of Optics 2020. — Vol. 22. Issue 11.
20Stafeev S.S., Kotlyar V.V.Toroidal polarization vortices in tightly focused beams with singularity // Computer Optics 2020. — Vol. 44. Issue 5. — P. 685-690
21Kotlyar V.V., Stafeev S.S., O’faolain L. etc. High numerical aperture metalens to generate an energy backflow // Computer Optics 2020. — Vol. 44. Issue 5. — P. 691-698
22Kotlyar V.V., Nalimov A.G., Stafeev S.S.Inversion of the axial projection of the spin angular momentum in the region of the backward energy flow in sharp focus // Optics Express 2020. — Vol. 28. Issue 23. — P. 33830-33840
23Stafeev S.S., Nalimov A.G., Kotlyar V.V.Strong negative longitudinal component of the Poynting vector in a tightly focused cylindrical vector beam // Journal of Physics: Conference Series. — 2020. — Vol. 1461. Issue 1.
2021
1Zaitsev V.D., Stafeev S.S., Kotlyar V.V.Focusing of cylindrical vector beams with an order from zero to one and with an order greater than one // Proceedings of ITNT 2021 - 7th IEEE International Conference on Information Technology and Nanotechnology. — 2021. —
2Zaitsev V.D., Stafeev S.S., Kotlyar V.V.Tight Focusing of Beams with High-order Cylindrical-circular Polarization // Progress in Electromagnetics Research Symposium. — 2021. — Vol. 2021-November. — P. 1091-1093
3Kotlyar V.V., Stafeev S.S., Kozlova E.S. etc. Spin-orbital conversion of a strongly focused light wave with high-order cylindrical–circular polarization // Sensors (Switzerland) 2021. — Vol. 21. Issue 19.
4Stafeev S.S., Kotlyar V.V.Invariance of the transverse spin angular momentum at the focus // Optics Communications 2021. — Vol. 479.
5Stafeev S.S., Kotlyar V.V.Tight focusing of beams with hybrid circular-azimuthal polarization // Proceedings of ITNT 2021 - 7th IEEE International Conference on Information Technology and Nanotechnology. — 2021. —
6Stafeev S.S., Kotlyar V.V.Energy flows in tight focus of optical vortices // OMFI-2021. — 2021. — Vol. 2103. Issue 1.
7Kotlyar V.V., Stafeev S.S., Nalimov A.G. etc. A dual-functionality metalens to shape a circularly polarized optical vortex or a second-order cylindrical vector beam // Photonics and Nanostructures - Fundamentals and Applications 2021. — Vol. 43.
9Kotlyar V.V., Stafeev S.S., Zaitsev V.D.Spin-orbital Conversion in Focused Vector Beams of Fractional Orders // Progress in Electromagnetics Research Symposium. — 2021. — Vol. 2021-November. — P. 1086-1090
10Kotlyar V.V., Stafeev S.S., Nalimov A.G.Focusing of a vector beam with c-lines of polarization singularity // Computer Optics 2021. — Vol. 45. Issue 6. — P. 800-808
11Nalimov A.G., Stafeev S.S.Linear to circular polarization conversion in the sharp focus of an optical vortex // Computer Optics 2021. — Vol. 45. Issue 1. — P. 13-18
12S. , Tripathi N., Sharma P. etc. Development of transition metal dichalcogenides for modern photodetector devices // Proceedings of ITNT 2021 - 7th IEEE International Conference on Information Technology and Nanotechnology. — 2021. —
14Stafeev S.S., Zaicev V.D.A minimal subwavelength focal spot for the energy flux // Computer Optics 2021. — Vol. 45. Issue 5. — P. 685-691
15Stafeev S.S., Kozlova E.S., Nalimov A.G. etc. Tight focusing of second-order cylindrical vector beam by Mikaelian lens // Journal of Physics: Conference Series. — 2021. — Vol. 1745. Issue 1.
16Zaitsev V.D., Stafeev S.S.The formation of an array of photonic nanojets by steps with square profile // Journal of Physics: Conference Series. — 2021. — Vol. 1745. Issue 1.
17Stafeev S.S., Nalimov A.G., Kotlyar V.V. etc. Metalens for energy backflow // Proceedings of SPIE - The International Society for Optical Engineering. — 2021. — Vol. 11793.
18Stafeev S.S., Nalimov A.G., Zaitsev V.D. etc. Tight focusing cylindrical vector beams with fractional order // Journal of the Optical Society of America B: Optical Physics 2021. — Vol. 38. Issue 4. — P. 1090-1096
19Kotlyar V.V., Stafeev S.S.A transverse energy flow at the tight focus of light with higher-order circular-azimuthal polarization // Computer Optics 2021. — Vol. 45. Issue 3. — P. 311-318
21Zaitsev V.D., Stafeev S.S., Kotlyar V.V.Energy backflow in tightly focused cylindrical vector beam with fractional order // Proceedings of SPIE - The International Society for Optical Engineering. — 2021. — Vol. 11775.
22Kozlova E., Stafeev S., Podlipnov V. etc. Theoretical and experimental study of spiral zone plates in aluminum thin film // Proceedings of ITNT 2021 - 7th IEEE International Conference on Information Technology and Nanotechnology. — 2021. —
23Kotlyar V.V., Nalimov A.G., Stafeev S.S. etc. Sharp focusing of beams with v-point polarization singularities // Computer Optics 2021. — Vol. 45. Issue 5. — P. 643-653
24Kozlova E.S., Stafeev S.S., Fomchenkov S.A. etc. Transverse intensity at the tight focus of a second-order cylindrical vector beam // Computer Optics 2021. — Vol. 45. Issue 2. — P. 165-171
25Zaitsev V.D., Stafeev S.S., Kotlyar V.V.Focusing of vector beams with fractional-order azimuthal polarization // Proceedings of SPIE - The International Society for Optical Engineering. — 2021. — Vol. 11793.
26Kotlyar V.V., Stafeev S.S., Nalimov A.G.Sharp focusing of a hybrid vector beam with a polarization singularity // PHOTONICS 2021. — Vol. 8. Issue 6.
27Kotlyar V.V., Stafeev S.S.Orbital and spin energy flows in tight focus // OPTIK 2021. — Vol. 245.
28Kotlyar V.V., Stafeev S.S., Zaitsev V.D.Minimal focal spot size measured based on intensity and power flow // Sensors (Switzerland) 2021. — Vol. 21. Issue 16.
30Stafeev S.S.An orbital energy flow and a spin flow at the tight focus // Computer Optics 2021. — Vol. 45. Issue 4. — P. 520-524
31Stafeev S.S., Kozlova E.S., Kotlyar V.V.Toroidal vortices of energy in tightly focused second-order cylindrical vector beams // PHOTONICS 2021. — Vol. 8. Issue 8.
2022
1Kotlyar V.V., Stafeev S.S., Zaycev V.D. etc. Poincaré Beams at the Tight Focus: Inseparability, Radial Spin Hall Effect, and Reverse Energy Flow // PHOTONICS 2022. — Vol. 9. Issue 12. № 12.
2Stafeev S.S., Zaitsev V.D., Kotlyar V.V.Circular polarization before and after the sharp focus for linearly polarized light // Computer Optics 2022. — Vol. 46. Issue 3. — P. 381-387
6Kotlyar V.V., Stafeev S.S., Kozlova E.S. etc. High-Order Orbital and Spin Hall Effects at the Tight Focus of Laser Beams // PHOTONICS 2022. — Vol. 9. Issue 12. № 12.
8Zaycev V.D., Stafeev S.S., Kotlyar V.V. Formation of a Reverse Energy Flow by Focusing Light with Quartz Glass Micro-Objects // Nanobiotechnology Reports 2022. — Vol. 17. Issue 6. № 6. — P. 909-914
9Zaycev Vladislav Dmitrievich, Kotlyar V.V., Kovalev A.A. etc. Index of the polarization Singularity of Poincare Beams // Bulletin of the Russian Academy of Sciences: Physics 2022. — Vol. 86. № 10. — P. 1158-1163
10Kotlyar V., Stafeev S., Zaitsev V. etc. Spin-Orbital Conversion with the Tight Focus of an Axial Superposition of a High-Order Cylindrical Vector Beam and a Beam with Linear Polarization // MICROMACHINES 2022. — Vol. 13. Issue 7. № 7.
11Zaitsev V.D., Stafeev S.S., Kotlyar V.V.Diffraction of laser radiation by a binary zone plate with fractional Order // Proceedings of SPIE - The International Society for Optical Engineering. — 2022. — Vol. 12295.
12Stafeev S.S., Nalimov A.G., Kovalev A.A. etc. Circular Polarization near the Tight Focus of Linearly Polarized Light // PHOTONICS 2022. — Vol. 9. Issue 3.
14Kotlyar V.V., Stafeev S.S., Kovalev A.A. etc. Spin Hall Effect before and after the Focus of a High-Order Cylindrical Vector Beam // Applied Sciences (Switzerland) 2022. — Vol. 12. Issue 23. № 23.
15Kozlova E., Stafeev S., Kotlyar V.Investigation of the influence of an aluminum cantilever on the polarization of a light field // 2022 8th International Conference on Information Technology and Nanotechnology, ITNT 2022. — 2022. —
16Stafeev S.S., Pryamikov A.D., Alagashev G.K. etc. Transverse Energy Flows in an Optical Fiber Based on Photonic Band Gaps // Nanobiotechnology Reports 2022. — Vol. 17. Issue 6. № 6. — P. 895-899
17Kozlova E., Stafeev S., Fomchenkov S. etc. Measuring of Transverse Energy Flows in a Focus of an Aluminum Lens // PHOTONICS 2022. — Vol. 9. Issue 8. № 8.
2008
1Kotlyar V.V., Kovalev A.A., Stafeev S.S.Sharp focusing of radially polarized light with microlenses // Computer Optics 2008. — Vol. 32. Issue 2. — P. 155-167
2Kotlyar V.V., Kovalev A.A., Stafeev S.S.Sharp focus area of radially-polarized Gaussian beam propagation through an axicon // Progress In Electromagnetics Research C 2008. — Vol. 5. — P. 35-43