федеральное государственное автономное образовательное учреждение высшего образования
«Самарский национальный исследовательский университет имени академика С.П. Королева»

Yablokova, Ludmila V.

  • Chair of Applied Mathematics and Physics, associate professor
2024
  • 1 Yablokova L., Lee A., Yablokov D.E. etc. Using a Parallel Approach to Calculating Micro-Optics Elements in DOERIS // 2024 10th International Conference on Information Technology and Nanotechnology, ITNT 2024. — 2024. —
2022
  • 1 Mokshin P.V., Golovashkin D., Pavelyev V. etc. Iterative approach based on the FDTD method for the design of metal-dielectric photonic crystal devices // 2022 8th International Conference on Information Technology and Nanotechnology, ITNT 2022. — 2022. —
2021
  • 1 Golovashkin D.L., Morunov N.D., Yablokova L.V. Block algorithms to solve zheng/chen/zhang’s finite-difference equations // Computer Optics 2021. — Vol. 45. Issue 3. — P. 461-468
  • 2 Golovashkin D., Yablokova L. Experimental research of block algorithm for the difference solution of heat conduction equation. Implicit Difference Scheme Case // Proceedings of ITNT 2021 - 7th IEEE International Conference on Information Technology and Nanotechnology. — 2021. —
2020
  • 1 Golovashkin D., Yablokova L., Subeeva G. R. The possibility investigation of block-algorithm construction using the BPM method // Proceedings of ITNT 2020 - 6th IEEE International Conference on Information Technology and Nanotechnology. — 2020. —
2019
  • 1 Golovashkin D.L., Yablokova L.V., Reznik I.D. Acceleration of calculations using block algorithms for the difference solution of the heat equation // Journal of Physics: Conference Series. — 2019. — Vol. 1368. Issue 5.
2018
  • 1 Yablokova L.V., Golovashkin D.L. Block algorithm for the joint difference solution of the d’Alembert and maxwell’s equations // CEUR Workshop Proceedings. — 2018. — Vol. 2212. — P. 56-62
  • 2 Yablokova L.V., Golovashkin D.L. Block algorithms of a simultaneous difference solution of D’alembert’s and Maxwell’s equations // Computer Optics 2018. — Vol. 42. Issue 2. — P. 320-327
2017
  • 1 Yablokova L.V., Golovashkin D.L. Application of the pyramid method in difference solution d'Alembert equations on graphic processor with the use of Matlab // CEUR Workshop Proceedings. — 2017. — Vol. 1902. — P. 68-70
2016
  • 1 Yablokova L.V., Golovashkin D.L. Implementation of difference solutions of Maxwell's equations on the GPU by method of pyramid // CEUR Workshop Proceedings. — 2016. — Vol. 1638. — P. 469-476
  • 2 Golovashkin D.L., Yablokova L.V., Belova E.V. Application of the method of pyramid for synthesis of parallel algorithm for difference solution of the two-dimensional partial differentials equation // CEUR Workshop Proceedings. — 2016. — Vol. 1638. — P. 444-450
  • 3 Yablokova L.V. ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ НЕСКОЛЬКИХ ПАРАДИГМ ПРОГРАММИРОВАНИЯ В НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ // Известия Самарского научного центра РАН 2016. — Vol. 18. № 4(4). — P. 864-869
2015
  • 1 Yablokova L.V. The concept of "range" used in experimental calculations // CEUR Workshop Proceedings. — 2015. — Vol. 1490. — P. 402-405
2014
  • 1 Golovashkin D.L., Yablokova L.V., Buldygin E.Yu. Совместное разностное решение уравнений Даламбера и Максвелла. Двумерный случай. // Computer Optics 2014. — № 38,1. — P. 20-27
  • 2 Buldygin E.Y., Golovashkin D.L., Yablokova L.V. Joint finite - Difference solution of the d'alembert and maxwell's equations. two - Dimensional case // Computer Optics 2014. — Vol. 38. Issue 1. — P. 20-27
2013
  • 1 GOLOVAShKIN D.L., YaBLOKOVA L. V. Combination of approaches of Mur and Berengerat realization FDTD method. // International conference ICONO/LAT.. — 2013. — P. 57-58
2012
  • 1 Golovashkin D.L., Yablokova L.V. Joint finite-difference solution of the dalamber and maxwell's equations. one-dimensional case // Computer Optics 2012. — Vol. 36. Issue 4. — P. 527-533
  • 2 GOLOVAShKIN D.L., YaBLOKOVA L. V. Совместное разностное решение уравнений Даламбера и Максвелла. Одномерный случай // Computer Optics 2012. — № Т. 36, №4. — P. 527-533