Название | Авторы | Год | Вид публикации | Гриф | Издательство | Страницы |
---|---|---|---|---|---|---|
Дополнительные главы геометрии функциональных пространств | Страхов С.И. | 2020 | Учебное пособие | без грифа | Другое | 88 |
Функциональный анализ, теория функций, теория вероятностей, дискретная математика.
Опубликовано более 150 работ в ведущих отечественных и зарубежных журналах. Перечисленные ниже результаты по теории функциональных пространств и операторов получили признание как в России, так и за рубежом.
Серия работ была посвящена изучению классической системе Радемахера (иначе: последовательности Бернулли независимых симметрично и одинаково распределенных случайных величин со значениями плюс-минус один). Использование теории операторов позволило решить ряд актуальных задач: получено описание подпространств симметричных пространств, порожденных этой системой, найдена характеризация систем функций, из которых можно выделить подсистему, эквивалентную по распределению системе Радемахера, получены необходимые и достаточные условия, при которых хаос Радемахера (система, состоящая из произведений этих функций) безусловен в симметричном пространстве. В цикле совместных работ с Г.Курберой (Испания) было исследовано понятие мультипликатора по системе Радемахера. С помощью этих результатов были доказаны локальный и весовой варианты одного из важнейших неравенств анализа --- неравенства Хинчина --- в общих симметричных пространствах. Кроме того, совместно с Л.Малиграндой (Швеция) и Е.М. Семеновым (Россия) было инициировано изучение этой системы в банаховых функциональных пространствах, не являющихся симметричными (в частности, в пространствах Чезаро, Морри и Пэли). Как итог этой работы в 2009 г. была опубликована монография «Функции Радемахера в симметричных пространствах», вскоре переведенная на английский язык.
В 1970 г. Х.П.Розенталь доказал замечательные неравенства для сумм независимых функций в L_p-пространствах. Вслед за этим многие известные математики стали пытаться распространить их на более общие функциональные пространства. Наиболее полные в этом направлении результаты были получены в цикле работ выполненных мною совместно с Ф.А.Сукочевым (Австралия). Введенная нами конструкция оператора Круглова позволила определить точные границы распространения неравенства Розенталя на симметричные пространства. Кроме того, с помощью нее был решен ряд актуальных задач геометрической теории симметричных пространств: найдены необходимые и достаточные условия, при которых в симметричном пространстве выполнено векторно-значное неравенство Хинчина с независимыми коэффициентами, получены наиболее широкие на сегодняшний день достаточные условия, при которых симметричные пространства на отрезке и полуоси изоморфны между собой (проблема, впервые поставленная Б.С.Митягиным). Кроме того, была выявлена связь между ограниченностью оператора Круглова и оператора случайных перестановок, естественным образом описывающего хорошо известные комбинаторные неравенства С.Квапеня и К.Шютта, а также доказаны новые вероятностные неравенства, с помощью которых получены наиболее общие на сегодняшний день оценки норм сумм дизъюнктных и независимых функций в симметричных квази-банаховых пространствах. Наконец, мною было доказано, что дополняемость подпространства, порожденного произвольной последовательностью независимых функций, в симметричном пространстве эквивалентна дополняемости подпространства, порожденного их дизъюнктными копиями. В случае, когда независимые функции эквивалентны l_p-базису, получено обобщение хорошо известной теоремы Дора-Старбеда о дополняемости подпространств L_p , порожденных независимыми функциями. Эти результаты, а также их приложения к изучению геометрии функциональных пространств изложены в совместном обзоре с Ф.А.Сукочевым, опубликованном в 2010 г. в «Успехах математических наук».
В серии работ, написанных совместно с К.В.Лыковым (Россия), предложен новый подход к задаче характеризации экстраполяционных пространств, позволивший описать все до сих пор известные экстраполяционные пространства Орлича единым методом. Доказана новая экстраполяционная теорема для операторов, ограниченных в L_p—пространствах, усиливающая классическую теорему Яно. В настоящее время эти результаты широко используются в исследованиях, относящихся как «классическому», так и некоммутативному анализу.
Одним из наиболее важных результатов геометрической теории банаховых пространств является классическая теорема Ж.Кривине о финитной представимости l_p-пространств. Мною была получена характеризация множества всех чисел p, для которых l_p финитно представимо в сепарабельном симметричном пространстве X на полуоси таким образом, что канонические орты l_p соответствуют дизъюнктным равноизмеримым функциям в X. С помощью этого результата доказан вариант теоремы Ж.Кривине для симметричных пространств.
Мною была решена проблема, поставленная польским математиком М. Мастыло более 10 лет назад: доказано, что каждое нетривиальное подпространство любого банахова пространства, порожденного L_p-нормой и некоторым положительным сублинейным оператором, содержит дополняемые l_p—копии.
Совместно с Л. Малиграндой (Швеция) было начато исследование геометрической структуры важных в приложениях функциональных пространств Чезаро. Дано описание сопряженного пространства, найден тип и котип этого пространства, дана полная характеризация множества тех q, для которых пространство Чезаро содержит изоморфные, а также дополняемые копии l_q—пространств. В настоящее время эта работа продолжена математиками из целого ряда стран.
За плечами более чем 30 лет педагогической работы, в основном со студентами 3-5 курсов факультета математики Самарского университета. Разработаны курсы лекций и практических занятий по математическому и функциональному анализу, теории вероятностей, курсам "Интеграл Лебега" и "Математическая логика", а также целому ряду спецкурсов и курсов лекций для магистратуры: "Базисы в банаховых пространствах", "Интерполяция операторов в банаховых пространствах", "Системы независимых функций и их приложения", "Ряды по система Хаара", "Ряды Фурье в симметричных пространствах", "Дифференцирование интеграла Лебега", "Интегральные операторы", "Сходимость рядов Фурье и преобразование Гильберта", "Теория мартингалов", "Перестановки рядов в банаховых пространствах", "Избранные вопросы геометрии банаховых пространств" и др.
Постоянно осуществлялось руководство курсовыми и дипломными работами студентов. Ряд студентов принимал участие в зональном конкурсе на лучшую студенческую работу, пятеро из них опубликовали свои результаты в университетском сборнике студенческих работ. Один из студентов (Лыков К.В.) занял призовое место на всероссийском конкурсе студенческих научных работ. В 2012 г. прочитал тематический курс лекций "Независимые случайные величины и геометрия банаховых пространств" для аспирантов и докторантов Польши в университете им. А.Мицкевича (г. Познань, Польша) в рамках Европейской гуманитарной программы (Европейский Союз), секция IV, Высшее образование и наука.
Много работал со школьниками Самары и области: участвовал в организации и проведении городских и областных олимпиад, руководил научной работой школьников, многие из которых становились победителями и призерами областного конкурса на лучшую научную работу, а также участвовали в аналогичном всероссийском конкурсе.
1. Ким Юлия Евгеньевна, 01.01.01, Интерполяция билинейных операторов в симметричных пространствах, к.ф.-м.н., 08.04.1997.
2. Узбеков Роман Фатихович, 01.01.01, Вещественный метод интерполяции на банаховых решеток, к.ф.-м.н., 31.05.2005.
3. Лыков Константин Владимирович, 01.01.01, Симметричные пространства, экстраполяционные относительно L_p-шкалы, к.ф.-м.н., 19.12.2006.
4. Тихомиров Константин Евгеньевич, 01.01.01, К-монотонные весовые пары банаховых решеток, к.ф.-м.н., 23.06.2011.
Губернская премия в области науки и техники, Министерство образования и науки Самарской области, 2012 г.
Губернская премия в области науки и техники, Министерство образования и науки Самарской области, 2018 г.
Премия Губернатора Самарской области 2021 г. за выдающиеся результаты в решении естественно-математических проблем.
Лауреат премии имени И.М. Виноградова, присужденной Российской Академией наук за цикл работ по исследованию геометрической структуры функциональных пространств, 2022 г.
Член редколлегий журналов "Banach Journal of Mathematical Analysis" (реферируется в Scopus и Web of Science) и "Contemporary Analysis and Applied Mathematics".
Член оргкомитета по проведению регулярной международной конференции "Positivity".