федеральное государственное автономное образовательное учреждение высшего образования
«Самарский национальный исследовательский университет имени академика С.П. Королева»

Свежие новости

События

Самарские ученые научили нейросеть видеть "невидимое" со скоростью света

Самарские ученые научили нейросеть видеть "невидимое" со скоростью света

Самарский университет

В Самарском университете им. Королёва создали скоростную нейросеть, обрабатывающую гиперспектральные данные

Институт информатики и кибернетики кафедра технической кибернетики Наука разработки Исследования искусственный интеллект Скиданов Роман
01.02.2024 2024-02-01

Ученые Самарского университета им. Королёва разработали и испытали скоростную нейросеть, способную в режиме реального времени анализировать поступающий видеопоток и практически мгновенно распознавать и находить в этом видеопотоке заданные объекты и изображения. Наряду с анализом "картинки" с обычной видеокамеры, разработка может оперативно, почти со скоростью света, анализировать также данные, получаемые с помощью гиперспектрометров - устройств, видящих реальность в многоканальном спектральном отображении и позволяющих обнаруживать объекты, невидимые для обычных средств наблюдения.

Проект реализуется по заказу Российского федерального ядерного центра-Всероссийского научно-исследовательского института экспериментальной физики (РФЯЦ-ВНИИЭФ) в рамках научной программы Национального центра физики и математики (НЦФМ), создаваемого в городе Сарове Нижегородской области по поручению Президента России. Исследования по данному проекту финансируются со стороны Министерства науки и высшего образования Российской Федерации и Госкорпорации "Росатом".

"Учеными нашего университета разработана оптическая нейросеть на основе аналоговой фотонной вычислительной системы, собран демонстрационный образец системы, подтвердивший в ходе экспериментов работоспособность выбранной схемы. Данная нейросеть предназначена для анализа поступающего в систему видеопотока и последующего распознавания и классификации определенных объектов и изображений. Ключевой особенностью разработки является возможность анализа гиперспектральных данных - система рассчитана на работу с двухдиапазонным гиперспектрометром, который также разработан у нас в университете. Аналоговая фотонная вычислительная система позволяет проводить анализ и распознавание объектов почти со скоростью света, что значительно - в сотни раз -превосходит скоростные характеристики современных цифровых нейросетей на основе традиционных полупроводниковых компьютеров. Это особенно важно для оперативного анализа гиперспектральных данных, изначально представляющих собой значительные по объему массивы информации", - рассказал профессор кафедры технической кибернетики Самарского университета им. Королёва доктор физико-математических наук Роман Скиданов.

Кроме быстродействия и широкого спектрального диапазона, аналоговые оптические вычислительные системы обладают также такими преимуществами, как полная защищенность от электромагнитных помех, малое потребление энергии и возможность параллельной обработки данных. Схема системы, позволяющей вести полностью оптическую обработку поступающей информации, была впервые предложена еще в 1958 году. Данное направление активно развивалось в 80-е годы прошлого века, но затем применение подобных устройств практически сошло на нет из-за их громоздкости и в связи с развитием цифровой техники. Последние годы эта сфера прикладных исследований становится все более актуальной в различных странах мира благодаря появлению новых материалов и созданию компактной оптики с особой структурой.

"Наш демонстрационный образец создан с использованием стандартных лабораторных оптико-механических компонентов, а также различных модуляторов и видеокамер. Оптическая схема устройства разработана в таком виде, чтобы благодаря камере, регистрирующей распределение интенсивности в частотной плоскости, можно было решать ряд дополнительных задач. Надежность распознавания в ходе первых экспериментов на демонстрационном образце составила 93,75%. В 2024 году планируется собрать и испытать экспериментальный образец системы в достаточно компактном корпусе размером с небольшой системный блок компьютера. Точность и надежность распознавания у экспериментального образца должна вырасти за счет подбора компонентов с улучшенными характеристиками. Опытный образец установки, возможно, будет готов в 2025 году", - отметил Роман Скиданов.


Справочно

При гиперспектральной съемке или гиперспектральном дистанционном зондировании Земли, проводимом с БПЛА или космического спутника, каждый пиксель полученного изображения представлен в виде полного или непрерывного спектра, что позволяет выявлять спектральные свойства искомых объектов и в ходе анализа полученных данных обнаруживать объекты, которые нельзя увидеть с помощью иных средств наблюдения.

Например, с помощью гиперспектрометров можно эффективно обнаруживать парниковые газы, фиксируя выбросы метана и CO2, а также вести геологоразведку труднодоступных территорий, выявляя из космоса спектральные сигнатуры различных минералов, в том числе тех, что указывают на возможное расположение месторождений нефти и природного газа. Гиперспектрометры более качественно и точно отслеживают возникновение лесных пожаров, следят за состоянием лесов и сельскохозяйственных посевов, помогают вычислять вегетационные индексы и даже выявляют из космоса стресс у растений.

Самарский университет им. Королёва - участник национального проекта "Наука и университеты".